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DE.O5 First Order Differential Equations e ¢
Basics Shade in to the right of the down arrowhead:

downshadow = Graphics [{GrayLevel [0.7 ], Polygon [
{{tlow, 6 1}, {tlow, yhigh '}, {thigh +1,yhigh 3}, {thigh +1,6 }}]}1;

B.1) Reading an autonomous diffeq through phase lines

Show[downshadow, flowphaseplot, Axes - True, AxesLabel - "ty }
DB-l-a-l) PlotRange - {ylow, yhigh }, AspectRatio - ﬁ]
, . T . . oldenRatio
Here's an old friend, the logistic differential equation:
Clear [diffeq, vy, t, f, starter 1;
r = 045;
b = 6;

flt,y 1=ry (1-y/b)

(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
y[t]==045 (1- Xl y(t]
y [0] == starter t

2 4 6 8 10 12
Here is a flow plot shown with plots of four solutions of this diffeq.

The down arrowhead indicates that any solution passing through the
{ylow, yhigh '} ={0,9 };

(tlow, thigh ~ } = {0, 12 }; shaded part above is going down and must level out at the cutoff point
flowplot = Table [Arrow [{1,f [ty ]},
Tail - {t,y }, VectorColor - Blue, HeadSize - 0.6 1, at y= 6.
{t, tiow, thigh, t—hih—a'ﬂv—}, {y. yiow, yhigh, —)ﬂgﬂg_—ylol}]i
Clear [yl,y2,y3,y,t 1i Now shade in to the right of the up arrowhead:
{starterl, starter2, starter3, starter4 } = {0, 3.0, 6.0, 85 }; )
endtime = thigh; upshadow = Graphics [{GrayLevel [0.7 ], Polygon [
yI[t 1=yI[t] / {{tlow, ylow '}, {tlow, 6 1}, {thigh +1,6 1}, {thigh +1,ylow }}]}1;
NDSolve [diffeq /. starter - starterl, y [t1, {t, O, endtime }101T;
Y2t 1=yIt] /. Show[upshadow, flowphaseplot, Axes - True, AxesLabel - {"t", "y" },
h ) ) X 1
5 IEItDS]ollle; Ejl]ffe;q /. starter - starter2, y [t1, {t O, endtime  }1[11; PlotRange  {ylow, yhigh }, AspectRatio 5 ]:

GoldenRatio
NDSolve [diffeq

AL 1=yIlt] /.

~

. starter - starter3, y [t]1, {t O, endtime }][11;

NDSolve [diffeq /. starter - starter4, y [t1, {t, O, endtime }101T; y
solutionplots =Plot [{yl1[t],y2 [t],y3 [t],y4 [t]}, {t O, endtime } 8 x x x x x x
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction > Identity  1; LW N W
setup = Show[solutionplots, flowplot, - 7 EdP gV v av 4
Axes - True, AxesLabeI1 - {"t""y" }, PlotRange - {ylow, yhigh 1}, “ gl :: ; ; ; ; :: ::
AspectRatio - ————————, DisplayFunction - $DisplayFunction ]; 2 AT AT AN A A
GoldenRatio AP P g g g o v 4
y
xxxxx z 4 6 & 10 12 !
8 L . .
) NRRRN The up arrowhead indicates that any solution passing through the
> > > > shaded part above is going up and must level out at the cutoff point at
2 g T T T T
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Look at this embellishment of the graphic immediately above. The solution corresponding y[0] = 6 stays flat.

phaseline = Phaseline [f [ty 1, {y,ylow,yhigh },Blue, -1]; All other solutions plot out entirely above or entirely below the flat
I flowphaseplot = Show[setup, phaseline 1; .
v solution.

MR 0B 1)

SE— What's the idea behind the phase line?
4 ; ; ; ; :: ; OAnswer:
YA AP A A A A See how the diffeq was entered:
A A A A 4
¢ Clear [diffeq, y, t, f, starter 1;
2 4 6 8 10 12 b = 6:

Folks like to call that gadget on the far left y
by the name "phase line" for the diffeq. flt,y 1 =045y (1 - E)
Explain what those arrowheads on the far left mean.
OAnswer: (diffeq = {y' [t] == f[ty [t]],y [0] == starter }) // ColumnForm
Y [t] ==045 (1- YLy y(t)
Take another look: V0] -- starter

| Showflowphaseplot 1; This allows you to read oy’ as a function ay:

| yprime =fpty ]

045 (1-%)y

Plot yas a function of y:
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phaseplot =
Plot [f [ty 1. {y, ylow, yhigh }, PlotStyle - {{Thickness [0.01 ], Blue }},
1
AxesLabel Yty , AspectRatio JES———
AR ) P _) GoldenRatio ]
Y
0.5
0.25
2 i ] Y
0.25
0.5
0.75

-1

This plot tells you that
y =f[t,y]>0

for y betweer0 and6.0.

The upshot:
If a solution is ever betwe¢hand6.0, then that solution is going up
and will level off as it gets ne6.0.

Take another look:
] Show[phaseplot 1;

This plot also tells you that
y =f[t,yl<O

fory bigger thar6.0.

The upshot:

If a solution is ever bigger thé.0, then that solution is going down
and will level off as it gets ne6.0.

This is exactly the same thing that the phase line plot is telling you:

Show[phaseline, Axes - True, AxesLabel - {"t","y" }, PlotRange -

1
tlow - 1.5, thigh , low, yhigh , AspectRatio —_—
{{tow < b low, yhig B P : _) GoldenRatio ]
y
8
6
4
2
74 6 8 10 12
] Show(flowphaseplot  1;
P S B T
OB.1.b.J)
Here's a new diffeq:
Clear [diffeq, vy, t, f, starter 1;
b = 6;
flt,y 1 =008 (y-20) (40 -y) (y -80);
(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm

DE.05.B1

y [t]==008 (4 -y[t]) (-8 +y[t]) (-2 +y[t])
y[0] == starter
Here is the phase line:
{ylow, yhigh '} = {-1, 10 };
{tlow, thigh } = {0, 12 };
phaseline = PhaseLine [f [t,y 1, {y, ylow, yhigh }, Blue, -17;

phaselineplot =
Show[phaseline, PlotRange - {{tlow -1.3, thigh }, {ylow, yhigh }},
Axes - True, AxesLabel - {"t","y" }1;

74 6 8 10 12!
Milk that plot for all the information you can get about how solutions
behave.

OAnswer:

This gives you just about as much information as the flow field.

Take another look:
] Show[phaselineplot 1;

t

|} 2 4 6 8 10 12

Read off:
Solutions starting withy[0] > 8 go down and level off iy = 8.
Solutions starting witt4 < y[0] <8 go up and level off &y = 8.

Solutions starting witk2 < y[0] <4 go down and level off iy =2
Solutions starting withy[0] <2 go up and level off &y = 2.

Check it out with some sample solution plots:

Clear [yl,y2,y3,y4,y,t 1;
{starterl, starter2, starter3, starter4
endtime = thigh;
yl[t.1=y[t] /.

NDSolve [diffeq /. starter - starterl, y [t1, {t O, endtime 31011,
y2[t_1=y[t]/.

NDSolve [diffeq /. starter - starter2, y [t1, {t O, endtime }1011;
y3[t_1=yI[t]/.

NDSolve [diffeq /. starter - starter3, y [t1, {t O, endtime }][M1I;
AL 1=y[t] /.

NDSolve [diffeq /. starter - starter4, y [t1, {t O, endtime 31011
solutionplots =Plot [{yl[t],y2 [t]1,y3 [t],y4 [t]}, {t O, endtime 1

PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - Identity 1;

}={-10,38,42,10 };

Show[solutionplots, phaselineplot, Axes - True, AxesLabel - {"t", "y" },

1

PlotRange - {ylow, yhigh , AspectRatio - —_—
9 by yng } P GoldenRatio

DisplayFunction - $DisplayFunction ];
y
10

8

6

4

2

[T—=2 % % @8 10 12"
Sure enough.

Solutions starting witty[0] > 8 go down and level off ney = 8.
Solutions starting witt4 < y[0] < 8 go up and level off ney = 8.
Solutions starting with2 < y[0] < 4 go down and level off iy = 2.
Solutions starting withy[0] <2 go up and level off iy = 2.
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0B.1.b.ii)

Stay with the same diffeq and look at the phase line plot again:
] Show[phaselineplot  1;

y
0

2

| T2 % & & 10 12
How does the phase plot signal you to beware of extreme sensitivity
to errors in starter data for starting valugd] year y0] = 4.0?

OAnswer:

Take another look:
] Show[phaselineplot  1;

y
0

2

[Tz a ¢ 8 10
Just aboviy = 4, you see an up arrowhead and just bey = 4, you
see a down arrowhead.
This tells you that that fcy[0] near4.0, you can expect sensitive
dependence on starter data:
In fact, solutions starting 4.01 go up, but solutions starting3.99 go
down.

See it happen for two solutioy1[t] andy2[t] with y1[0] = 3.99 and
y2[0] = 4.01:

Clear [y1,y2,y3,y4,y,t 1;
{starterl, starter2 } ={3.99,401 1},
endtime = thigh;
ylt 1=yl[t] /.

NDSolve [diffeq /. starter - starterl, y [t1, {t O, endtime  }1[11;
y2[t 1=yt /.

NDSolve [diffeq /. starter - starter2, y [t1, {t, O, endtime }101T;
solutionplots =Plot [{yl[t],y2 [t]}, {t O, endtime }

PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - Identity 1;

Show[solutionplots, phaselineplot, Axes - True, AxesLabel - Y 1,

1
PlotRange low, yhigh , AspectRatio [ ——
ge ~ U e ) P _’ GoldenRatio
DisplayFunction - $DisplayFunction ] ;
y
10

8

6

44

2

t

| 2 4 6 8 10 12
That's extreme sensitivity to errors in the starting valwy[O]ffor y[O]

near4.0.

B.2) For non-autonomous diffeqs, a single phase line is not
all that useful;
multiple phase lines are sometimes useful

0OB.2.a.i) Sometimes a single phaseline won't cut it

Here's a diffeq related to the logistic diffeq.

Clear [diffeql, y, t, f1, starter 1;
b = 7.0;

DE.05.B1-B2

flt,y 1 =02y?2 (1_%):

(diffeql = {y' [t] == fl [ty [t]1],y [0] == starter }) // ColumnForm
y'[t]==0.2 (1-0.142857y [t])y[t]?
y[0] == starter
Here's a flow plot shown with plots of four solutions of this diffeq.
{ylow, yhigh '} = {0, 10 };
{tlow, thigh } = (0,12 };
flowplotl = Table [Arrow [{1,fL [ty 1}, Tail - {ty },
VectorColor - Blue, ScaleFactor - Normalize, HeadSize -»061],
thigh - tlow yhigh - ylow

t, tlow, thigh, y
{ ow. thg 10 10 }]

}. {y ylow, yhigh,

Clear [y1,y2,y3,y,t 1
{starterl, starter2, starter3, starter4
endtime =thigh +1;
ylft1=yI[tl/.

NDSolve [diffeql /. starter - starterl, y [t]1, {t O, endtime }I[1I;
y2[t_1=y[t] /.

NDSolve [diffeql /. starter - starter2, y [t1, {t O, endtime 31011
y3[t1=y[t] /.

NDSolve [diffeql /. starter - starter3, y [t], {t O, endtime }]1[1I;
AL 1=y[t] /.

NDSolve [diffeql /. starter - starter4, y [t1, {t O, endtime 31011,

}={0,20,50,95 N

solutionplots1 =Plot [{yl[t],y2 [t],y3 [t],y4 [t1}, {t O, endtime }
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - Identity ];
phaselinel = PhaseLine [fl [t,y 1, {Yy, ylow, yhigh }, Blue, -17;

setupl = Show[solutionplotsl, flowplotl, phaselinel,

Axes - True, AxesLabel - {"t","y" }, PlotRange - {ylow, yhigh 1},
1

AspectRatio -» —————
GoldenRatio

, DisplayFunction - $DisplayFunction ];

Yy

\
}
7
7
v
AA A AT AT T T T

P S - T s v

The single phase line works beautifully and reveals just about all you
need to know about this diffeq.
Now look at this new diffeq:

Clear [newdiffeq, v, t, f2, starter 1;
2,y 1=y-¢t

(diffeq2 = {y' [t] ==f2 [ty [t]1],y [0] == starter }) // ColumnForm
YIt] == -t +y(t)
y[0] == starter
And look at this flow plot shown with plots of three solutions of this
diffeq:

{ylow, yhigh '} ={0,9 };
{tlow, thigh } ={0,6};
flowplot2 = Table [Arrow [{1,f2 [ty 1}, Tail - {ty },
VectorColor - Blue, ScaleFactor - Normalize, HeadSize -»041],
thigh - tlow yhigh - ylow

t, tlow, thigh, B
{ ow. thg 10 10 }

}. {y ylow, yhigh,

Clear [yl,y2,y3,y,t 1
{starterl, starter2, starter3
endtime = thigh;
ylft_1=y[t]/.

NDSolve [diffeq2 /. starter - starterl, y [t1, {t O, endtime }1011;
y2[t_1=y[t]/.

NDSolve [diffeq2 /. starter - starter2, y [t], {t O, endtime  }]1[11;
y3[t_1=y[t]/.

NDSolve [diffeq2 /. starter - starter3, y [t1, {t O, endtime }1011;

} = {0.4,0.99,30 };

solutionplots2 =Plot [{yl[t],y2 [t],y3 [t1}, {t O, endtime },
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - Identity ];

setup2 = Show[solutionplotsZ, flowplot2,

Axes - True, AxesLabel - {"t","y" 1}, PlotRange - {ylow, yhigh 1},
1

AspectRatio » —————
GoldenRatio

, DisplayFunction - $DisplayFunction ] ;
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Explain why a single phase line wouldn't have been useful for the
second diffeq.

OAnswer:

el

Look at both plots side by side:
| both = Show[GraphicsArray [{setupl, setup2 }1];

1

If the plots are too small, grab the plot and
drag one of the handles to make it bigger.

On the left, the single phase line does a great job.

But on the right a single phase line won't work.

Reason: On the right, some of the solutions go up for a while and thel
turn around and go down. This makes an overall single phase line out
of the question.

OB.2.a.ii)
Why did that happen?

OAnswer:

Look at the way the two diffeqs were entered:

Clear [diffeql, v, t, f1, starter 1;
b = 7.0;

flt,y ] =02y? (1_%);

(diffeql = {y' [t] == fl [ty [t]],y [0] == starter }) // ColumnForm
y'[t]==02 (1-0.142857y [t])y[t]?

y [0] == starter

Clear [diffeq2, y, t, 2, starter 1;

f21t,y_1=y-¢

(diffeq2 = {y' [t] == f2 [ty [t]],y [0] == starter }) // ColumnForm
y'[t]==-t+y[t]
y [0] == starter

Now look at the vectors that define each flow:

] flowl ={1,f1l [ty 1}
(1,02 (1-0.142857y )y?}
] flow2 =(1,f2 [ty 1}

{1, -t +y}

The slope of the flow vectors fdiffeql depends only cy.
The slope of the flow vectors fdiffeq2 depends on BOTt4andy.

See it:
] Showboth 1;

(%

That's why a single phase line is not all that usefudiffeq2.

OB.2.a.iii) Recognizing autonomous diffegs

Folks say that a diffeq is autonomous if a single phase line tells all.
How do you recognize in advance whether a given diffeq is
autonomous?

OAnswer:

Look at the functiorf[t, y] used to enter the diffeq.
If f[t, y] has no dependence Hrithe you have an autonomous diffeq.

DE.05.B2

Otherwise you don't.

Samples:
Clear [diffeq, b, a, y, t, f, starter 1;

yZ
L, =ayd|1-—|;
oy 2

(diffeql = {y [t] ==f[ty [t]1],y [0] == starter }) // ColumnForm

yIt]==ay(t]® (1- ¥

y[0] == starter
|
Look at:
| frty 1
ar 1]
No dependence cn
The upshot: This diffeq is autonomous and is ripe for analysis through

a phase line.
Another:
Clear [diffeq, b, a, y, t, f, starter 1
_av? (si Yy
Tl 1 =ay? (sin - )
(diffeql = {y [t] ==f[ty [t]],y [0] == starter }) // ColumnForm
yIt]==ay[t1? (Sin [t]- Y5l
y[0] == starter
Look at:
| fity 1

ay? (,% +Sin [t])
Vivid dependence ot
The upshot: This diffeq is not autonomous.

OB.2.a.iv) Multiple phaselines for non-autonomous diffegs

Go with this new non-autonomous diffeq:
Clear [newdiffeq, y, t, f, starter 1;
frt,y 1=y-05t2

(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
y[t] ==-05t 2+y[t]
y [0] == starter

You can see the t2 term all by itself.
This signals that this diffeq is not autonomous.

Look at this flow plot shown with plots of three solutions of this

diffeq:
{ylow, yhigh '} = {0, 12 };
{tlow, thigh } ={0,61};
scalefactor =0.6;
flowplot = Table [Arrow [{1,f [ty 1}, Tail - {ty },
VectorColor - Blue, ScaleFactor - scalefactor, HeadSize -»051,
thigh - tlo high - ylo
{t, tiow, thigh, Doy -Tow ; Y}, {y.yiow, yhigh, YL YOW - ™ W

Clear [yl,y2,y3,y,t 1
{starterl, starter2, starter3
endtime = thigh;

}=1{04,09,2 };

ylft1=y[tl/.
NDSolve [diffeq
y2[t 1=y[t] /.
NDSolve [diffeq /. starter
y3[t_1=y[t]/.
NDSolve [diffeq

/. starter - starterl, y [t], {t O, endtime }][M1I;

- starter2, y [t1, {t O, endtime Y1011

/. starter - starter3, y [t], {t O, endtime }][M1I;
solutionplots

PlotStyle

=Plot [{yl[t],y2 [t],y3 [t1}, {t O, endtime 3},
- {{Thickness [0.015 1, Red }}, DisplayFunction - |dentity 1;

setup = Show[solutionplots, flowplot,
Axes - True, AxesLabel - Yy
1

GoldenRatio

}, PlotRange - {ylow, yhigh 1},

AspectRatio - , DisplayFunction

- $DisplayFunction I:
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This diffeq is not autonomous. Thus, it is not possible to use a single
phase line to analyze it.
Can you use multiple phase lines to any profit?

OAnswer:
Ya sure! You bettcha!
Make a different phase line for estchnd then plot it at the
corresponding like this:

Clear [phaseline 1;
phaseline [t_1:=
PhaseLine [f [ty 1, {Y, ylow, yhigh }, GrayLevel [051,t 1;
thigh - tlow
8

phaselines = Table [phaseline [t], {t tiow, thigh, s

Show [ setup, phaselines 1;

See the phase lines without the flow plot:

- True, AxesLabel - {"t", "y" 1},
1

GoldenRatio

Show[solutionplots, phaselines, Axes
PlotRange - {ylow, yhigh }, AspectRatio -

DisplayFunction - $DisplayFunction ] ;

t

1 2 3 4 5 6
This gives some (but not all) of the info in the flowplot:

] Show[setup 1;

What a great tool this computer is.

B.3) Autonomous diffegs with parameters. Bifurcations and
bifurcation points

0OB.3.a.i)
You are the manager of the Red Oak Catfish Farm in Hartland,
Wisconsin. Today your attention is focused on a lake where the
logistic model
y[tl = ayit] (1~ 1%) with 0O<aand O<b
is used to estimate the fish population t weeks after the lake is
stocked.
Incorporate a constant weekly harvest rate r. The model
yitl =ayit] (1- L) -,
is reasonable.
The specifics for this lake are in the code below:

DE.05.B2-B3

In the code below:
> lis measured in weeks
- y[t] and b are measured in thousands of fish.

- The harvest rate I'is measured in thousands of fish per week

Clear [diffeq, y, t, f, r, starter 1;

a = 0.34;

b = 71;

fre,y 1 =ay(l-l)-r

b
setup =
(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
Yy [t] ==-r +0.34 (1-0.140845y [t])y[t]
y[0] == starter
The secrets of this model are contained in the funcfipiyjf

I fity 1

-r +0.34 (1-0.140845y )y
For each constant harvest rate r, this diffeq is autonomous.
Reason: fit, y] has no dependence on t.
Take a look at this labeled contour plot fif §] as a function of y and
the harvest rate r:
{ylow, yhigh } =
{rlow, rhigh } =

fcontourplot = ContourPlot  [f [t,y ], {r, rlow, rhigh },
{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50,
Contours - {0}, Axes - True, AxesLabel -y 1
Epilog - {{Blue, Text ["f [ty ] > 0", {0.2,3 }1},
{Orange, Text ["f [ty ] < 0", {0.5,7.5 1}1}}1;

0 0. 10. 20. 30. 40. 50. 60. 7'

flt,y,r1 >0
flt,y, 1] <O

{r, y}s for which
{r, y}s for which

The light region indicates the
and the dark region indicates the

Because
yitl = f[t, yItl],
you can relabel this plot:

phaseplot =
Show [fcontourplot, Epilog - {{Blue, Text ["y" > 0", {0.2,3 }1},
{Orange, Text [y < 0", {0575 13}1}}1;

0 0. 10. 20. 30. 40. 50. 60. 7'

What does this plot tell you ?

OAnswer:

Take another look:
] Show([phaseplot 1;

00 0. 10. 20. 30. 40. 50. 60. 7'
At the surface level, it tells you:

1) If you have a fish populaticchand go with harvest rareso that
{r, y} plots out in the black region, then the fish populayas going
down.

2) If you have a fish populatichand go with harvest rareso that
{r, y} plots out in the white region, then the fish populayas going
up.
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For example, if the harvest rater = 0.4 and the fish population is

y = 7.0, then the poir{r, y} = {0.4, 7.Q plots out as follows:

{ry }={04,70 1}
Show [ phaseplot, Graphics [{Red, PointSize  [0.04 ], Point [{r,y }1}1,
PlotLabel - "y going down" 1;

{04, 7.

y y going down

8
6
4
2
r

o0 0. 10. 20. 30. 40. 50. 60.
This signals when you go with harvest rr = 0.4 and the fish

population isy = 7.0, then the fish population is going down.

See what happens when you go with harvestr = 0.4 and the fish
population isy = 5.0:

{ry }={04,50 }
Show[phaseplot, Graphics [{Red, PointSize  [0.04 ], Point [{r,y }1}1,
PlotLabel - "y going up" 1;
{04 5.
Yy going up

8
6
4
2
r

00 0. 10. 20. 30. 40. 50. 60.
This signals when you go with harvest rr = 0.4 and the fish

population isy = 5.0, then the fish population is going up.

0B.3.a.ii)

Take another look at the phase plot:
] Show[phaseplot 1];

087, 10. 20. 30. 40. 50. 60. 7'

Use this plot to say everything you can about how the population y

behaves when you go with a constant harvest rat@.4.
OAnswer:

Throw in a phase line correspondincr = 0.4:

Clear [phaseline,y 1;
r =04,
phaseline = PhaseLine [f [t,y ], {y.,ylow, yhigh }, Red, r 1;
newphaseplot = Show[phaseplot, phaseline,
PlotRange - {{rlow, rhigh }, {ylow, yhigh }}1;

BN WSO o N o,

0. 10. 20. 30. 40. 50. 6 "
Try not to be frightened by the big arrowheads.

This tells you that when you maintain a constant harvest rate
r=0.4,

then:

- If you start withy[0] above abou6 (thousand), then the fish

DE.05.B3

population will decrease and level off at ab6thousand).

- If you start withy[0] below abou6 (thousand), but above abd.5
, then the fish population will increase and level off at about

6 (thousand).

- If you start withy[0] below aboul.5 (thousand) then the fish
population will decrease to extinction.

See all this happen:

r =0.4;

endtime =52;

Clear [y1,y2,y3,vy4,vy,t 1;

{starterl, starter2, starter3, starter4 } = {1.487, 2.0, 4.2,80 };

yl[t 1=y[t] /.
NDSolve [diffeq
y2[t_1=y[t] /.
NDSolve [diffeq
y3[t_1=yI[t]/.
NDSolve [diffeq
AL 1=y[t] /.
NDSolve [diffeq . starter - starter4, y [t], {t O, endtime }][M1I;
solutionplots =Plot [{yl[t],y2 [t]1,y3 [t],y4 [t]}, {t O, endtime }
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - Identity 1;

~

. Starter - starterl, y [t]1, {t O, endtime }101T;

~

. starter - starter2, y [t], {t O, endtime }][M1I;

~

. starter - starter3, y [t1, {t O, endtime }][M1I;

~

outcomes = Show[solutionplots, Axes - True, AxesLabel - {"t", "y" },
1

PlotRange - {ylow, yhigh , AspectRatio - —_—
9 ty ynig ! P GoldenRatio

DisplayFunction - $DisplayFunction ] ;

BN WS o N ®
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Compare:

| Show[GraphicsArray [ {outcomes, newphaseplot 1

The new phase plot teIIs you aII you need to know.

0B.3.a.iii)

Take another look at the phase plot:

] Show[phaseplot 1;
y

00 0.710. 20 30. 40. 50. 60. 7'

Use this plot to say everything you can about how the population y
behaves when you go with a constant harvest rat@.85.

OAnswer:

Throw in a phase line correspondingr = 0.65:

Clear [y]1;
r =0.65;
phaseline = PhaselLine [f [ty 1, {y, ylow, yhigh }, Red, r 1;
newphaseplot = Show[phaseplot, phaseline,
PlotRange - {{rlow, rhigh }, {ylow, yhigh }}1;

S<
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This tells you that when you maintain a constant harvest rate of
r=0.65,
then the fish population eventually dies out.

See it happen:

r =0.65;
endtime = 52;
Clear [yl1,y2,y3,y4, vy, t 1;
{starterl, starter2, starter3, starter4
ylpt_1=y[t1/.

NDSolve [diffeq /. starter
y2[t_1=y[tl/.

NDSolve [diffeq /. starter
y3[t_1=y[t] /.

} = {1.487, 20, 4.2,8.0 }
- starterl, y [t1, {t O, endtime }I[1I;

- starter2, y [t1, {t, O, endtime }1011;

NDSolve [diffeq /. starter - starter3, y [t]1, {t O, endtime }I1[11;
yA[t1=y[t] /.
NDSolve [diffeq /. starter - starter4, y [t1, {t, O, endtime }101T;

solutionplots =Plot [{yl1[t],y2 [t],y3 [t],y4 [t]}, {t O, endtime }

PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - |dentity 1;
outcomes = Show[solutionplots, Axes - True, AxesLabel - "ty },
1
PlotRange low, yhigh , AspectRatio —_—
ge by yng } P _) GoldenRatio

DisplayFunction - $DisplayFunction ] ;

EFNWAS OO N®

10 20 30 40 50
Disaster.

Compare:

| Show[GraphicsArray [ {outcomes, newphaseplot 311

Again, the new phase plot tells you all you need to know.

0B.3.a.iv)

Use the phase plot to estimate the largest sustainable harvest rate r.
Estimate how large the starting valy@lywill have have to be to be
able to maintain this largest sustainable harvest rate.
OAnswer:
Take a peek:
] Show[phaseplot 1;
y
8

6
y >0

08, 10. 20. 30. 40. 50. 60. 7"
The largest sustainable harvest rrateaboutr ~ 0.6:

r =0.6;
phaseline = PhaseLine [f [ty 1, {Yy, ylow, yhigh
newphaseplot = Show[phaseplot, phaseline,

PlotRange - {{rlow, rhigh }, {ylow, yhigh }}1;

},Red, r 1;

BN W b 9o o

0. 10. 20. 30. 40. 50. 6 "
Grab the last two plot and animate.

DE.05.B3

And to sustain this harvest rate you'll have to start y[Ojmore than

about3.3 (thousand fish). Check it out:

r =0.6;
endtime = 52;
Clear [y1,y2,y3,y4,y,t 1;
{starterl, starter2, starter3, starter4
yl[t.1=y[t]/.

NDSolve [diffeq /. starter
y2[t_1=y[t]l/.

NDSolve [diffeq /. starter
y3[t_1=yI[t]/.

NDSolve [diffeq /. starter
AL 1=y[t] /.

NDSolve [diffeq /. starter

}={29,34,42,80 N

- starterl,y  [t], {t, O, endtime  }1[11;
- starter2, y [t]1, {t, O, endtime }1[1T;
- starter3,y  [t], {t, O, endtime  }1[11;
- starter4, y [t1, {t O, endtime Y1011

solutionplots =Plot [{yl[t],y2 [t]1,y3 [t],y4 [t]}, {t O, endtime },
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - Identity 1;

- True, AxesLabel -ty 1,
1
GoldenRatio

outcomes = Show[solutionplots, Axes

PlotRange - {ylow, yhigh }, AspectRatio -

DisplayFunction - $DisplayFunction ] ;

PN WA OO N®
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Compare:

] Show[GraphicsArray [ {outcomes, newphaseplot 1

JIIV

T0 20 30 40 50 !

OB.3.a.v) Estimating the bifurcation point

Take yet another look at the phase plot this time shown with a line
indicating the largest sustainable harvest rate estimate:

r =0.6;

bifurcationplot =

Show[phaseplot, Graphics [{Red, Line [{{r,ylow }, {r,yhigh }}1}11;

0. 10. 20. 30. 40. 50. 60. 4
Lots of folks call this a bifurcation plot. Neat word.
Why do they call it by that funny name?

Estimate the birfurcation point.

OAnswer:
A birfurcation is any situation in which you see something forking into
two branches.

And you are seeing it here:

] Show[bifurcationplot 1;
y

0D 0. 10. 20. 30. 40. 50. 60. 7r
Now look at the diffeq again;

Clear [r1];
diffeq
{y'[t] ==-r +0.34 (1-0.140845y [t])y[t],y [0] ==starter }
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| diffeq
{y'[t] ==-08t +y[t

The starting points of the two solutions are almost the same; yet the
two solutions are totally different in character.

If you maker bigger than thrindicated in the plot, then ALL
solutions of the diffeq decay O

],y [0] == starter }

If you maker lower than the indicated in the plot, then some of the

solutions decay t0, but others do not. You gotta agree that small changes in the starting conditions can resul

in big changes in solutions. This is exactly what folks mean when they

The cutoff point between the differences in solution behavior i the talk about senistive dependence on starting data.

indicated in the plot.

OB.4.a.ii)
. ) ) . Do all differential equations exhibit sensitive dependence on starter
That's why this plot is called a bifurcation plot. And that's whyrthe data?
indicated in the plot is called the bifurcation point. DAnswer:

Not all of them.

B.4) Sensitive dependence on starter data Here's one that doesn't exhibit sensitive dependence on starter data:

; Clear [f, t,y 1;
OB.4.a.i) Flow plots b o 10
Here's a simple differential equation: flLy_ 1= -y;
Clear [diffeq, y, t, f, starter 1; setup =
b =10 (diffeq = {y' [t] == f [ty [t]1],y [0] == starter }) // ColumnForm
fl,y_ 1=y -08¢ ,
y'[t]==-y[t]

setup = y[0] == starter

(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm endtime = 6;
St - _0.8t t scalefactqr =0.4;

y[E)]]w starter i o gign J= ety
Y o . . {tlow, thigh } = ( 8 };
And a flow plot together with the plots of two solutions::
endtime = 6; flowplot = Table [
scalefactor =0.4; Arrow [scalefactor {1,f [ty 1}, Tal - {t y }, VectorColor - Blue ],
{ylow, yhigh } = {-4,10 }; . thigh - tlow . yhigh - ylow .
{tlow, thigh 3} = {0, 10 }; {t, tlow, thigh, 3 1. {y. ylow, yhigh, —_— 13k
flowplot = Table [Arrow [{1,f [ty ]}, Tal - {ty }, Show flowplot, Axes - True, AxesLabel - {"t","y" },
VectorColor - Blue, ScaleFactor - scalefactor, HeadSize -»0.71], 1
thigh - tl high - vl AspectRatio -» ———————, PlotLabel -setup [1,11];

{t, tlow, thigh, 9 o ow }. {y. ylow, yhigh, M}]; GoldenRatio ]
Clear [y1,y2,y3,t 1; y yot] == -y[t)
{starterl, starter2 } = {0.79,0.81 }; 4
NIRRT
VLI T=yIt] /. NN NN N N VA

NDSolve [diffeq /. starter - starterl, y [t1, {t O, endtime  }1[11; NN N N N N NN

y2[t_1=yI[t] /. t

NDSolve [diffeq /. starter - starter2, y [t], {t O, endtime }1[11; V2 2/ V2 4/ VZ 6/ 2 8/
-2
solutionplots =Plot [{yL[t1,y2 [t1}, 7 7 7 7 7 7 7 7
{t, 0, endtime  }, PlotStyle - {{Thickness [0.01 ], Red }}, -4
AspectRatio - ﬁ, PlotRange - {ylow, yhigh 3, The flow plot tells you to expect all solutions to the sucked onto the
oldenRatio
AxesLabel - {"t","y [t ]"}, DisplayFunction > Identity  ]; t-axis.

Here it is for three solutions:

Clear [yl,y2,y3,t 1;
{starterl, starter2, starter3
endtime = thigh;

Show solutionplots, flowplot, DisplayFunction
y[t]
10

- $DisplayFunction 1;

} = {-20,20,40 };

yl[t 1=y[t]/.
NDSolve [diffeq
y2[t_1=y[t] /.
NDSolve [diffeq
y3[t_1=yI[t]/.
NDSolve [diffeq

/. starter - starterl, y [t]1, {t O, endtime }101T;

/. starter - starter2, y [t], {t O, endtime }][M1I;

AN \
Lnnhnt
What do folks mean when they talk about "sensitive dependence on
starter data?"
OAnswer:

/. starter - starter3, y [t1, {t O, endtime }][M1I;

solutionplots
{t, 0, endtime

=Plot [{yl[t],
}, PlotStyle

1
GoldenRatio
- {"t" "y [t]"}, DisplayFunction

y2 [t1,y3 [t]},
- {{Thickness [0.01 ], Red }},
AspectRatio -

PlotRange - {ylow, yhigh '},

You're looking at it.
Take another look:

] Show[solutionplots, flowplot, DisplayFunction
y [t ]

AxesLabel - Identity  ];

Show[solutionplots, flowplot, PlotLabel
DisplayFunction - $DisplayFunction 1;

- $DisplayFunction 1; - setup 1,17,

Al
ST i

What you see are two solutions of:
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If two solutions of this differential equation have nearby starting value
ony[0], then the corresponding solutions will remain close to each
other forever.

This differential equation is nearly insensitive to starter data.

OB.4.b) Using the phase line to detect extreme sensitivity to errors in
starter data

Here's an autonomous diffeq:

Clear [diffeq, vy, t, f, starter 1;
b = 6
c 2;

fIL,y_ 1 =03y (1_%) (1-%);

(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
yIt]==031 (1-¥5h) (1- Xh)yit)

y [0] == starter

Here is a phaseline for this diffeq:

{ylow, yhigh } = {0, 10 };

{tlow, thigh } = {0, 15 };

phaseline = PhaseLine [f [t,y ], {Y, ylow, yhigh }, Blue, -17;

1

GoldenRatio
- {{tlow -2, thigh 1}, {ylow, yhigh }},

[t1"}]:

setup = Show[phaseline, AspectRatio -

Axes - True, PlotRange
AxesLabel - {"t","y

ylt]
0

S

25 5 7.5 10 125 15'
Use the phase line to determine starting valueq @jnay which this
diffeq is extremely sensitive to error ifdy.

OAnswer:

Take another look:

] Show[setup 1;
yIt]
(]

S

35 B 75 10 125 15
If y[0] is just below6, then solutions go down and level of y = 2.

If y[0] is just aboveb, then solutions go up.
So you have sensitive dependence on starter day[O]onear6.
Check it out:

endtime = thigh;
{starterl, starter2 } = {5.95,6.05 };
ylt 1=yf[t] /.

NDSolve [diffeq /. starter
y2[t_1=y[t]/.

NDSolve [diffeq /. starter

- starterl, y [t1, {t, O, endtime }1011;
- starter2, y [t], {t O, endtime }I1[1I;

solutionplots
{t, 0, endtime

=Plot [{yL[t],y2 [t1},
}, PlotStyle - {{Thickness [0.01 ], Red }},
1
GoldenRatio
AxesLabel - {"t","y [t]1"}, DisplayFunction

AspectRatio - , PlotRange - {ylow, yhigh 1},

> Identity  ];

Show [setup, solutionplots, DisplayFunction - $DisplayFunction 1;

DE.05.B4

25 5 7.5 10 12.5 15'

Pay no attention to the vertical line; it is a bug in Mathematica .

Now that's sensitive!

OB.4.c) Using bifurcation plots to detect extreme sensitivity to errors

in starter data
Experience with B.3) will be helpful here.

You are the manager of the Red Oak Catfish Farm in Hartland,
Wisconsin. Today your attention is focused on a lake where the
logistic model

y[tl = ayit] (1~ Y5L) with 0< s and 0< b
is used to estimate the fish population t weeks after the lake is
stocked.
Incorporate a constant weekly harvest rate r. The model

yltl =aytl (1- 44 -,
is reasonable.
The specifics for this lake are in the code below:

In the code below:
> Tis measured in weeks

- y[t] and b are measured in thousands of fish.
- The harvest rate I'is measured in thousands of fish per week

Clear [diffeq, y, t, f, r, starter 1;
a = 0.34;
b = 7.1;

I, y_ 1 =ay(1-%)-r;

setup =
(diffeq = {y' [t] == f[ty [t]],y [0] == starter }) // ColumnForm
Yy [t] ==-r +0.34 (1-0.140845y [t])y[t]
y[0] == starter
The secrets of this model are contained in the funcfipyi
I fity 1

-r +0.34 (1-0.140845y )y
For each constant harvest rate r, this diffeq is autonomous.
Reason: fit, y] has no dependence on t.
Take a look at this labeled contour plot 6&yf[t, y] as a function of
y and the harvest rate r:

{ylow, yhigh '} = {0, 8 };
{rlow, rhigh } ={0,07 };
phaseplot = ContourPlot [f [t,y 1, {r, rlow, rhigh },
{y, ylow, yhigh }, ContourSmoothing - Automatic,
PlotPoints - 50, Contours - {0}, Axes - True,
AxesLabel - {"r',"y" }, Epilog - {{Blue, Text ["y" > 0", {0.2,3 1}1},
{Orange, Text ["y' < 0", {0.5,75 }1}}1;
0 0. 10. 20. 30. 40. 50. 60. 7'
The light region indicates the {r, y}s for which y/ = f[t, y] >0
and the dark region indicates the {r, y}s for which y’ = f[t, y] <0

What does this plot tell you about sensitive dependence on starter
conditions for this diffeq?
OAnswer:
Take another look:
] Show[phaseplot 1;
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This also tells you that when you go with a harvest rate

r less than abol0.6,

then you should expect sensitive dependence to any starter y[0] on

that is near the bottom half of the curve.
If the starter data oy[0] is a little bit above the bottom half of the

curve, then the corresponding solution will increase but if the starter
data ory[0] is just a little bit below the curve, then the corresponding

solution will decrease.

r = Random[Real, {rlow, 0.58 1}1;
phaseline = PhaseLine [f [t,y 1, {y,ylow, yhigh 1}, Red,r 1;

Show [

phaseplot, phaseline, PlotRange - {{rlow, rhigh '}, {ylow, yhigh }}1;

PN WAoo o,

0. 10. 20. 30. 40. 50. 6 "

r = Random[Real, {rlow, 0.58 }];
phaseline = PhaseLine [f [t,y ], {y.ylow, yhigh }, Red, r 1;

Show([
phaseplot, phaseline, PlotRange

- {{rlow, rhigh }. {ylow, yhigh 1}}1;

<

PN W AN oo N

30.40.50.6

. 10. 20.
Tremendous sensitivity f(r, y[0O]} near the bottom half of the curve.

No serious sensitivity fc{r, y[0]} along the top half of the curve.
And no serious sensitivity elsewhere.

B.5) Formulas for solutions: Nice work when you can get it

Rensselaer Polytechnic Institute mathematics professor William
Boyce and co-author of the respected standard DiffEq textbook
"Elementary Differential Equations and Boundary Value Problems
(Wiley, 1986) says this:

“The traditional course on differential equations that | took many years
ago and taught up until the past couple of years dealt almost entirely
with derivation of formulas for solutions of various kinds of
differential equations. . . . Most of the algebraic manipulations
featured in the traditional course can now be easily relegated to a
computer. Using Maple or Mathematica , most of the more or less routine
problems in any book can be solved in one or two commands. . . . a good
deal of this traditional material can be dispensed with and replaced by
more valuable experiences with the student. . . A decrease in time spent
on symbolic manipulation by hand should provide an opportunity for more
emphasis on conceptual understanding . . . Details of mathematical
procedures and algorithms are rapidly forgotten unless they are used
frequently, but underlying concepts and ideas become a part of an
individual's mindset and are always available - or at least much less
likely to be lost than manipulative skills."

Stanford University electrical engineering professor Steve Boyd puts

it this way:
"l can't say too strongly how unimportant
symbolic manipulation is in engineering.”

Stanford University electrical engineering professor and National
Academy of Engineering member, Tony Siegman says this:

DE.05.B4-B5

"So far as differential equations are concerned, from looking back at
what | learned 40 years ago, compared to what | do in practice now, it
seems to me that I'd eliminate a large amount of DE solving and

categorizing tricks | learned in those days . .. My current view would

be: If Mathematica knows how to solve it analytically [with a formula],
then | don't neeed to know how. Mathematica knows about everything there
is to know, and if it doesn't know how to solve it analytically [with a
formula through DSolve], hell, itll just solve it numerically [through

NDSolve]. "

OB.5.a.i)

If you have a formula for(f, y], then you can always plot the flow of
solutions of

Y[t = fIt, yitl.

For example:
Clear [f, t,y 1;
flrt,y 1= 03y (y - 04t );
diffeq = (Y [t] == f[ty [t]])

Y [t]==03y [t] (<04t +y[t])
And a flow plot:

scalefactor =0.5;
{ylow, yhigh '} = {0, 6 };
{tlow, thigh } = {0, 10 };

flowplot = Table [Arrow [{1,f [ty 1}, Tall - {ty },
VectorColor - Blue, ScaleFactor - Normalize, HeadSize -051],

thigh - tlow yhigh - ylow

{t, tiow, thigh, - by viow, yhigh,  —————1}];

1
Show [flowplot, Axes - True, AxesLabel - {"t","y" 1}, AspectRatio - ?]

y

PN WA OO N
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And you can plot a sample solution:

Clear [y, ysol, t 1;
endtime = 12;
thisstarter =0.9;

sol = NDSolve [ {diffeq,y [0] == thisstarter }.y [t1, {t 0, endtime }1;
ysol [t_]=y[t] /.sol [11;

solutionplot = Plot [ysol [t1, {t O, endtime }, PlotRange - All,
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"t","y [ti1":,

1
AspectRatio —»5, DisplayFunction - |dentity ];

Show[solutionplot, flowplot, DisplayFunction - $DisplayFunction 1;

! 2 4 6 8 10 12
Say, it looks like this particular solution goes to 0 asob.
How can you tell for sure?

OAnswer:
You askMathematicaor a formula for the solution:
| formulasol = DSolve [ {diffeq, y [0] == thisstarter Ly It til
{{y[t] > - (36.000000000000 2.71828182845905 ~ ~0-060000000000000¢ =ECCommesse -y /

(~40.000000000000  + 39.074467746146 Erf  [0.244948974278318t 1)~
1.00000000000000 }}

Ugh. That's a mess.

To get a useful formula, look at the diffeq again:
| diffeq
y'[t] ==03y [t] (-04t +y[t])

Re-enter it with cleared symbols:

Clear [a, b, f, t, y, starter 1;
flt,y_ 1=ay (y-bt);
diffeq = (y' [t] == f [ty [t1])
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yt]==ay(t] (-bt +y[t])
Ask Mathematicafor a solution this way:

thisa = 0.3; thisb =04
formulasol = DSolve [{diffeq,y [0] ==starter },y [t],t ] /.
{a > thisa, b - thisb, starter - thisstarter }

(fyit1- 1.13842 E 006t * 1
y 1.26491 _ 1.23564 Eff [0.244949¢ ]

Fish out the formula:

Clear [yformula 1;
yformula [t_ ] = Chop[y[t] /. formulasol [111
1.13842 E 006t *
1.26491 - 1.23564 Erf [0.244949t |
Ast - oo, Erf[t] > 1:
Plot [Erf [t1, {t 0,8 1}, PlotStyle - {{Thickness [0.01 ], Blue }},
1
e
GoldenRatio

PlotRange - All, AspectRatio

AxesLabel - ("t","Erff  [t1"}]:

Erf[t)
1

0.8

0.6

0.4

0.2

t

2 4 6 8
So ast - «, the dominant term is tre -9 ¢ term which goes t0 as

t - co. This forces the solution to go Ooast — co:

] Limit [yformula [t],t - ]
0

Now you know for sure that the solution plotted abo\G:iis the
global scale.

0B.5.a.ii)

If you have a formula for(f, y], then you can always plot the flow of

solutions of

yltl = fIt, yit].
For example:
Clear [f,t,y 1;
fIty_ 1= 03ySin [04 (y +t)];
diffeq = (y' [t1 == fIty [t1])
y'[t]==03Sin [04 (t+y[t])]y[t]
And a flow plot:

scalefactor =0.8;
{ylow, yhigh } = {0, 20 };
{tlow, thigh }={0,20 };
flowplot = Table [Arrow [scalefactor {1, f [ty 1}, Tal - {ty },
VectorColor - Blue, ScaleFactor - 1, HeadSize - 0.6 ],
thigh - tlow high - ylow
{t, tiow, thigh, 9 —TOW 3 1y, yiow, yhigh, %}]?

15
Show[flowplot, Axes - True, AxesLabel - {"t","y" 3,
1
1
GoldenRatio

AspectRatio
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And you can plot a sample solution:
Clear [y, ysol, t 1;
endtime = thigh;
starter = 16;

sol = NDSolve [ {diffeq, y [0] == starter },y [t], {t O, endtime 1
ysol [t_]=y[t]/.sol [1];

solutionplot = Plot [ysol [t1, {t O, endtime }, PlotRange - All,

DE.05.B5-T1

PlotStyle - {{Thickness [0.015 ], Red }}, AxesLabel - {"t","y [t]"},

1
AspectRatio - > DisplayFunction - |dentity ];

Show[solutionplot, flowplot, DisplayFunction - $DisplayFunction 1;

yit]
25

20

15

10

5
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It looks like this particular solution gets sucked onto a straight line.
How can you tell for sure?

OAnswer:

You could askvathematicaor a formula for the solution, but

t

Mathematicawill fail. This is not because of any deficiency of
Mathematica

No machine, no person, no anything has ever come up with a formula
for the solution of this differential equation.
In this case, you'll have to depend on the visual evidence because the
confirming formula is simply not available.

OB.5.a.iii) Formulas are luxuries

What's the moral?
OAnswer:

Professor Peter Lax, former President of the American Mathematical
Society, once said that the class of differential equations whose
solutions can be described by exact formulas is "pitifully small."

Students in differential equations courses of the past have been forced
to concentrate on this small class to the exclusion of others. You have
bigger fish to fry.

Think of it this way:
If you can get a neat simple formula for a solution of a given
differential equation, then you are very lucky.

According to Lax, the main thing to remember is "the general idea that
every differential equation has a solution and that this solution is
uniquely determined by initial data. . . That today we can use
computers to explore the solutions of [differential] equations is truly
revolutionary; we are only beginning to glimpse the consequences."

You are in on the ground floor of this revolution.

DE.O5 First Order Differential Equations
Tutorials

T.1) Setting harvest rates to control the catfish population

This is a problem from an area of mathematical engineering called

control theory. If your university has an electrical engineering

department, you're likely to find control theory folks. Some math
departments also have control theory folks as well.
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OT.l.a.i) You want

You are the manager of the Black Oak Catfish Farm in Moberly, y'[t] = 0 wheny[t] = ygoal
Missouri.One day a team from the University of Missouri College of

Agriculture stops by with some advice based on new research. First, (so that the population doesn't change when it resygoal), so you

they tell you that pushing the population too high invites disease and want to ser so thai{r, ygoa} is the point at which the goal line goes
death of fish. They go on to say that you should try to set your harves from the light region (whery’[t] > 0) to the black region (where
rate so that the long term fish population is 0.7 times the carrying , 0
capacity of the lake. y't1 <0).

Because

You decide to apply this to a certain lake modeled by

yltl=ayt](1- %) -r
where yt] measures the population of the lake (in thousands),

y'[t] = f[t, yltl],
ther you want is thea that makes

a=0.12, b= 9 (thousand) and r is your weekly harvest rate (in f[t, ygoal = O:
thousands). Clear [r1;
Come up with an estimate of the r that does this. controleqn =0 ==f [ty [t]] /.y [t]-ygoal;
controlsol = Solve [controlegn, r 1;
OAnswer:
Knowing that a bifurcation diagram reveals a heckuva lot, you whip ; ;;"6'2’0"‘3’ =1 /. controlsol 1]
out your PowerPC laptop, igniddathematicaand set up your model: or:
In the code below: ] FindRoot [controleqn, {r,02 }1
> tis measured in weeks
) (r >0.2268 }
- y[t] and b are measured in thousands of fish. o

- The harvest rate I'is measured in thousands of fish per week This is the harvest rate the model tells you to use.

Clear [diffeq, y, t, f, r, starter 1; Take a |OO|('

a = 0.12; .

b =09 controlline = Graphics [{Green, Thickness [0.01 ],

Line [{{rcontroller, ylow }, {rcontroller, yhigh 133038

fry 1 =ay(1_%)_r;

Show[goalplot, controlline,

model = Graphics [ {Green, PointSize [0.04 ], Point [{rcontroller, ygoal 31311,
(diffeq = {y' [t] == f [ty [t]],y [0] == starter }) // ColumnForm
y'[t]==-r+012 (1-¥l)yrt]
y[0] == starter
You know that the secrets of the model are contained in:
Ity
-r +0.12 (l—%)y y Goal plot
You make this labeled contour plotf[t, y] as a function ay and the -
weekly harvest ratr:
{ylow, yhigh '} = {0, b };
{rlow, rhigh } = {0,035 };
phaseplot = ContourPlot  [f [t,y 1, {r, rlow, rhigh }. ODO‘ 09.D. 19 D 29 D, _r[
{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50, . .
Contours - (0}, Axes - True, AxesLabel - {"r", "y"  } Try out this harvest rair=for several starting values y[O0]:

Epilog - {{Orange, Text ["y' [t] = f[ty [t]] < O '{0.23, 09b 31},

r = rcontroller;
{Blue, Text ["y' [t] = f[ty [t]] > 0", {0.125,0.5b }1}}1;

Clear [y1,y2,y3,t 1;

{starterl, starter2, starter3 }={3,58 };

endtime = 150;

yl[t 1=y[t]/.
NDSolve [diffeq

y2[t_1=y[t] /.
NDSolve [diffeq

y3[t_1=yI[t]/.
NDSolve [diffeq

~

. starter - starterl, y [t1, {t O, endtime }1011;

~

. starter - starter2, y [t], {t O, endtime }][M1I;

~

. starter - starter3, y [t1, {t O, endtime }1[1I;

.09. D. 19. 2. 29. 9. 35 Plot [(yl [t1,y2 [t],y3 [t1}, {t O, endtime 1},
The light region indicates the {I’, y}s for which y' = f[t, y] >0 . ) 1
and the dark region indicates the {r, y}s for which y’ = f[t, y] <0 PlotStyle ~ {{Thickness  [0.015 ], Red }}, AspectRatio GoldenRatio
The carrying capacity of the lakebsand you want to control the long P'f(ffj;gﬂh;k‘nﬁ‘;f' yh['ggl ]},' S:ZSL?? ?l) y;);‘ ’},y {eﬁgdm;: 552;9 ;)] ik
term population to b0.7 b, so you plot: v
ygoal =0.7b 8

goalplot = Show[phaseplot, Graphics [

6
{Green, Thickness [0.01 ], Line [{{rlow, ygoal }, {rhigh, ygoal 33131,

PlotLabel - "Goal plot" 7]; 4
6.3
y Goal pl ot 2
8 20 40 60 80 100 120 140 t
6 Yes!
] frt,y[ty]

The long term population seems to be controlled just as it was
2 supposed to be.

i

O
00.09.D.19.2.29. 3.
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oT.1.a.ii)

Stay with the model in part i) above, and make sure all parts of part i)

are live on your machine and look at this:

r = rcontroller;
Clear [yl,y2,y3,t 1;
{starterl, starter2, starter3
endtime = 150;
ylpt_1=yrt1/.

NDSolve [diffeq /. starter - starterl, y [t]1, {t O, endtime  }][11;
y2[t_1=y[t] /.

NDSolve [diffeq /. starter - starter2, y [t1, {t O, endtime  }1[11;
y3[t_1=y[t] /.

NDSolve [diffeq /. starter - starter3, y [t], {t O, endtime }]1[11;

} = {2.67, 3.0, 5.0 1

Plot [{y1[t],y2 [t],y3 [t]}, {t O, endtime },
1
[ —
GoldenRatio
PlotRange - {ylow, yhigh }, AxesLabel - {"t',"y [t]1"}, Epilog -
{Green, Thickness [0.01 ], Line [{{0, ygoal }, {endtime, ygoal )}]}];

PlotStyle - {{Thickness [0.015 ], Red }}, AspectRatio

yt]

6//
4
20 40 60 80 100 120 140
Disregard the vertical line.
Apparently setting the harvest rate
r= rcontroller
works for some starting values ofdyand not for others.

t

How big does the starting value offjy/have to be to guarantee that
setting

r= rcontroller
does the job it was selected to do?

OAnswer:
Look at:
startplot =
Show[phaseplot, goalplot, Graphics [ {Yellow, Thickness [0.01 1,
Line [{{rcontroller, ylow }, {rcontroller, yhigh 331311
y
’ N
6
4 ] o= flty[t)]
2

080, 09. 0. 19. 9. 29. . 38
If you go with a starter value ¢y[0] so thai{rcontroller, y{0]} lands on

the plotted line in the lower part of the black region, then you are in
trouble because you are starting wy’[0] < 0 and things will only get
worse as time goes on.
You can estimate from the plot that

r = rcontrolle
will not work for starting values on

y[0] < 2.5
and that it will work fine for starting values on

y[0] > 3.0:

r = rcontroller;
Clear [yl1,y2,t 1;
{starterl, starter2
endtime = 100;

}={25,30 };

ylpt_1=y[t1/.

NDSolve [diffeq /. starter - starterl, y [t1, {t O, endtime }I[1I;
y2[t_1=y[t] /.

NDSolve [diffeq /. starter - starter2, y [t1, {t, O, endtime }1011;

twosolutions = Plot [(yl [t],y2 [t1}, {t O, endtime }

DE.05.T1

1

_’ GoldenRatio
PlotRange - {ylow, yhigh }, AxesLabel - {"t',"y [t]"}, Epilog -
{Green, Thickness [0.01 ], Line [{{O, ygoal }, {endtime, ygoal ))]}];

PlotStyle - {{Thickness [0.015 ], Red }}, AspectRatio

ylt]
8
6
4

2

20 40 60 80 100"

You can refine your estimate of the critical starting value by plotting:

Clear [y1,y2,t 1;
{starterl, starter2
endtime = 100;

}={26,27 )

yl[t 1=y[t] /.

NDSolve [diffeq /. starter - starterl, y [t1, {t O, endtime }][M1I;
y2[t_1=y[t] /.

NDSolve [diffeq /. starter - starter2, y [t], {t O, endtime  }][M1I;

twosolutions = Plot [{yl [t1,y2 [t1}, {t O, endtime 1
1
GoldenRatio
PlotRange - {ylow, yhigh }, AxesLabel - {"t',"y [t]1"}, Epilog -
{Green, Thickness [0.01 ], Line [{{0, ygoal }, {endtime, ygoal )}]}];

PlotStyle - {{Thickness [0.015 ], Red }}, AspectRatio -

ylt]
8

6
4

—< |

20 40 60 80 100

The flow plot confirms that when you go wy[0] > 2.7, then the
control will work, but when you go wity[0] < 2.6, then the control

will not work. With further experimentation, you can refine this
estimate.

oT.1.a.iii)

The University of Missouri team comes back to your fish farm and
you excitedly tell them what you've learned. They are happy to see
your analysis. They go on to say, "The model

yitl = ayit] (1- 1) —r
treats every day the same way. Bright summer days make for faster
growth and higher lake capacity than the dark days of winter."
In fact, the proportion of the day getting daylight is given by this
function (with t measuring weeks since January 1):"
Clear [daylightproportion, t 1;
daylightproportion

1 _ 3651
= — (12.00 +2458in [0.0172 ( -so)]]
24 52

1 ' 3651t
57 (12 +24sin [0.0172 (80 + === ])
You plot this function:
Plot [daylightproponion [t], {t, 0,52 },

1
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio - Z]

0.6
0.55
0.5
0.45

10 20 30 40 50
You say: "This looks good because it's high in the summer and low in
the winter. Now let me check it by calculating

2 f052 daylightproportiofit] 4t:"

| siz Nintegrate  [daylightproportion [t1, {t, 0,52 }]

0.500081
And you react: "l like it because now | know for sure that the average
value of daylightproportioft] is very close to 0.5, as it should be."
The University of Missouri teams says that the growthaateries
with sunlight as does the lake capacity b. And they say that you
should refine the model by replacing the constant growth factor a by a
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function whose average value is a, but is proportional to the hours of
daylight on day t and whose average value is 1 like this:
I Clear [bettera 1;
bettera [t_ ] = a 2 daylightproportion [t1
365t

Elll
And you should replace the constant lake capacity b by b times the
same function:

I Clear [betterb 1;

0.01 (12. +24Sin [0.0172 (-80+

betterb [t_ 1 = b 2 daylightproportion [ti
3 ' 365t
7 (12 +24sin 00172 (-80+ =)])

You say: "Let's see what this refined model predicts for two years
with a weekly harvest rate+ 0.2 (thousand) fish but starting out
with 4000 fish."

r = 0.2
Clear [diffeq, vy, t, f, starter 1;

y
It = bettera [t (1- —.) _r
Lyl tly betterb [t ]
model = (diffeq = {y [t] == f[t,y [t]],y [0O] == starter });
diffeq 7/ ColumnForm

Clear [yl,y2,t 1;
{starterl } = {4};
endtime =252;
ygoal =6.3;
ylt 1=yt /.

NDSolve [diffeq /. starter - starterl, y [t1, {t, O, endtime }101T;
solutionplot = Plot [{yl [t1}, {t O, endtime .
1
PlotStyle - {{Thickness [0.015 ], Red }}, AspectRatio - _
GoldenRatio

AxesLabel - {"t","y [t]1"}, DisplayFunction - |dentity ];
goalplot = Graphics [
{Green, Thickness [0.01 1, Line [{{0, ygoal 1}, {endtime, ygoal 33131
scalefactor =45;
{ylow, yhigh } = {0,9 };

flowplot = Table [Arrow [{1,f [ty 1}, Tal - {ty },

VectorColor - Blue, ScaleFactor - scalefactor, HeadSize -131],
endtime high - ylow
{t.0, endime, T}y, yiow, yhigh, Lo YO 4y,
10 8
1

Show/| flowplot, goalplot, solutionplot, AspectRatio B
[ plot, goalp P P GoldenRatio

- {"t" "y [t]1"}, PlotRange - All,
- $DisplayFunction ]:

Axes - True, AxeslLabel
DisplayFunction

y'[t]==-02 +001 (12. +24Sin [0.0172 (-80 + 3L )])y[t] (LW
y [0] == starter
yit]
3 5
8 \/’3\ \/'\‘\
> ¥ N > P
- " AR I 4G N
61 TN TN
v - Bavavi R
Rt wan S A N A A A4 g
28 2 25 B IR B
S ) ) SNy .
N N 20y N4y N60N N0y 400y

You say: "l like this. Now let me try to use a variable harvest fHte r
to control the fish population so that, in the long terfti, settles in

on the goal of 6.3 (thousand) fish."

Do it. Estimate the size of the first year's harvest.

OAnswer:

You do the same thing you did above but incorporate a variable week

harvest rate[t]:
Clear [diffeq, vy, t, r, f, starter 1

y

fre, = bettera [t 1- | - 1 [t ];
oy []y( betterb [t]) a

model = (diffeq = {y' [t] == f[ty [t]],y [0] == starter })

P ) 365t
(y'[t]==-r[t]+001 (12. +2.48in [0.0172 (780+ 5 )])
( 4y(t]
t]|1- ,
vy { 3 (12 -245n [0.0172 (80 358 )])J

y[0] == starter }

DE.05.T1

You want to maintain the fish population6.3 (thousand); so
y'[tl = flt, yltl]
should be0 wheny[t] = 6.3:

] controlegn =0==f[ty [t]]/.y [t]-63

0==-r[t]+0063 (12 +24Sin [0.0172 (-80 + 365t )])

52

1 8.4
12. +2.4Sin [0.0172 (-80 + 3BL )] |
Your variable weekly harvest rer[t] is:

sol = Solve [controlegn, r [t11;
rit_]1=r[t]/.sol [1]

0.063 (12A +245sin [0.0172 (,80+ 3%521 H)

I 8.4
" 12, +24Sin [0.0172 (-80 + 3L )

Check it out:

Clear [yl1,y2,y3, t 1
{starterl, starter2, starter3
ylft_1=yI[tl/.

NDSolve [diffeq /. starter
y2[t_1=y[t] /.

NDSolve [diffeq /. starter
y3[t_1=yI[t]/.

NDSolve [diffeq /. starter

} = {3.0,5.0, 8.0 };
- starterl, y [t1, {t O, endtime }][M1I;
- starter2, y [t1, {t O, endtime 31011

- starter3, y [t], {t O, endtime  }]1[11;

solutionplot =Plot [{yl[t],y2 [t],y3 [t]}, {t O, endtime }
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - |dentity 1;
scalefactor = 3.5
{ylow, yhigh } = {0,9 };
flowplot = Table [Arrow [{1,f [ty 1}, Taill - {ty },
VectorColor - Blue, ScaleFactor - 6, HeadSize - 0.6 ],
dti high -yl
{t. 0, endtime, ~endume }. {y. ylow, yhigh, yhigh -ylow 1
10 8
1

Show[flowplot, goalplot, solutionplot, AspectRatio ey rua)
GoldenRatio
- {"t" "y [t]"}, PlotRange - All,

- $DisplayFunction I:

Axes - True, AxesLabel
DisplayFunction

\
>
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Looks good and feels good.

In all these cases, the first year's harvest brings in this many fish:

] 1000 Nintegrate
11800.

Not bad.

OT.l.a.iv)

Keep everything (except the starting values [@)ythe same as in the
previous part and estimate the minimum starter valug@rttyat will
guarantee that the fish population will not die out.

OAnswer:

[r{t], {t 0,52 }]

Take a look at the flow plot:
1

” GoldenRatio
[t]"}, PlotRange - All ];

Show[flowplot, AspectRatio , Axes - True,

AxesLabel - {"t", "

<

yit]
8
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It looks like the minimum starter value y[0O] that will guarantee that
the fish population will not die out is arouy[0] ~ 3.0.

Check it out:

Clear [yl,y2,y3,t 1;
{starterl, starter2, starter3
ylpt_1=y[t1 /.

NDSolve [diffeq /. starter
y2[t_1=y[t]/.

NDSolve [diffeq /. starter
y3[t_1=yl[t]/.

NDSolve [diffeq /. starter

}={25,30,35 1}

- starterl,y  [t], {t, O, endtime  }][11;
- starter2, y [t1, {t, O, endtime }1[1I;
- starter3,y  [t], {t 0, endtime }][1I;

solutionplot =Plot [{yl[t],y2 [t],y3 [t]}, {t O, endtime 1
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - Identity ];

1
b
GoldenRatio

Axes - True, AxesLabel - {"t" "y [t1"}, PlotRange - {ylow, yhigh 1},
DisplayFunction - $DisplayFunction ] ;

yit]
RRRRRRRRRN

Show[ﬂowplot, goalplot, solutionplot, AspectRatio

L/

20 40 60 80 100

The three starter values in the plot above 2.5, 3.0, 3.5, and the
starter value 02.5 did not lead to a sustainable harvest. This leads to
the estimatiy[0] ~ 3.0 for the smallest starter value for a sustainable
harvest.

You can refine this estimate :
|

Clear [yl,y2,y3,t 1;
{starterl, starter2, starter3
ylt 1=yf[t] /.

NDSolve [diffeq /. starter

}={27,29,31 }

- starterl, y [t1, {t, O, endtime }1011;

y2[t_1=y[t] /.

NDSolve [diffeq /. starter
y3[t_1=yl[t]/.

NDSolve [diffeq /. starter

- starter2, y [t1, {t, O, endtime }1011;
- starter3, y [t1, {t O, endtime }I[1I;

solutionplot =Plot [{yl[t],y2 [t],y3 [t]}, {t O, endtime 1
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - |dentity 1;

1

” GoldenRatio
Axes - True, AxesLabel - {"t", "y [t]"}, PlotRange - {ylow, yhigh 3},
DisplayFunction - $DisplayFunction ] ;

(27,29,31

Show[flowplot, goalplot, solutionplot, AspectRatio

AV
e y——
R e >
4 /\\'//
2 NS N7
N ~ ~N ~
20 40 60 80 100 '

The three starter values for this plot we{2.7, 2.9.3.1}.
A good estimate of the minimum starter valuey[0] that will
guarantee that the fish population will not die out is
y[0] = 2.7
but when you start with this value, you are playing with fire.

T.2) Hand symbol manipulation: Separating the variables

OT.2.a)
All oldtime DiffEq folks have heard of the method of separation of
variables.
Just what is this famous procedure?

OAnswer:

DE.05.T1-T2

It's a way of using symbolic manipulation to go after an exact formula
for the solution of certain differential equations. It is normally used
only in simple, special cases.

Here it is in action on the following diffeq:

Clear [diffeq, y, t, f, r, starter 1;
frt,y 1 =-21y?2

(diffeq = {y' [t] ==f[ty [t]1],y [0] == 3.1}) // ColumnForm
y't] ==-21y [t]?
y[0] ==3.1

BeforeMathematicawill help you, you have to re-enter the diffeq with
cleared constants this way:

thisa = -2.1;
thisstarter = 3.1;
Clear [a,Vy,t, diffeq, y, t, f, 1, starter 1;

flt,y 1 = ayr2t

(diffeq = {y [t] == f[ty [t]],y [0] == starter }) // ColumnForm
y[t]==aty [t]?
y[0] == starter
Separating the variables involves putting ally[t}: andy’[t] terms on

the left and leaving thteterms on the right like this:
Yot

yi?’
newright =at;
samediffeq = newleft == newright

newleft =

==at
yiz 8

Now integrate both sides frohtot:

t t
integratedeqn =j newleft dt ==J newright dit
0 0
11 _at?
y[o1 yit] 2

Replacey[0] by starter:

| neweqn = integratedegn
1 1 at?

/.y [0] - starter

starter ylt] 2
Now solve fory[t]

Clear [symbolformulay 1;
ysol = Solve [neweqgn,y [t]1];
symbolformulay [t_ ] =y[t] /.ysol [1]
2 starter
T2 vastatert 2

Now replacea with the givera andstarter with the givestarter:

Clear [formulay 1;
formulay [t_1 =
symbolformulay [t ] /. {a -> thisa, starter
6.2
T -2-651t 2

Done.

oT.2.b)

Here's another diffeq:
Clear [diffeq, y, t, f, r, b, starter 1
frt,y 1 =t (L2 +24y?2);

-> thisstarter }

(diffeq = {y' [t] == f[t,y [t]1],y [0] == starter }) // ColumnForm
y[t] ==t (12 +24y [t]?)
y [0] == starter
Use separation of variables to try to come up with a formula for the
solution.

OAnswer:

Take another look:

Clear [diffeq, y, t, f, r, b, starter 1;
frL,y_ 1=t (L2 +24y?2);

(diffeq = {y' [t] == f[ty [t]],y [0] == starter }) // ColumnForm
yIt] ==t (1.2 +24y [t]?)
y[0] == starter
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BeforeMathematicawill help you, you have to re-enter the diffeq with

cleared constants this way:

thisa = 1.2;
thisb = 2.4;
Clear [a,Vy,t, diffeq, y, t, f, r, starter 1;

fILy_ 1 =t (a+by?);

diffeq = {y' [t] ==f[ty [t]],y [0] == starter }
(y'[t] ==t (a+by[t]?),y [0] == starter }

Separating the variables involves putting ally[t] andy’[t] terms on

the left and leaving thtsterms on the right like this:
y'It]
a+by[t]?’

newright =t;
samediffeq = newleft == newright

y'[t] 't
> ==
a+byl[t]

Now integrate both sides froOitot:

newleft =

t t
integratedegn =j newleft dt ==j newright  dt
o o

ArcTan [%0—‘] ArcTan [Lb\/la-“—‘]
T Vave T Vab
Replacey[0O] by starter:
| neweqgn = integratedegn /.y [0] - starter
ArcTan [bstater ] ArcTan [YByitl]
Va . Va
Va /b Va /b
Now solve fory[t]

Clear [symbolformulay 1;
ysol = Solve [neweqn,y [t]];
symbolformulay  [t_ ] =y[t] /.ysol [1]

VaTan[4 (vVa Vb t2+2ArcTan [ s:?;ter N1
Vb
Now replacea with the givera andb with the giverb:

12
2

-
N

M|

Clear [formulay 1]
formulay [t ] = symbolformulay [t] /. {a ->thisa,b ->thisb }

0.707107 Tan [% (1.69706 t 2 +2ArcTan [1.41421 starter  ]) |
Done.

OT.2.c) The logistic diffeq

Here's the logistic diffeq:
yltl =ry[t] (1- %)
with yO0] = starter.
Clear [diffeq, y, t, f, r, b, starter 1;
fly_ 1 =ry (1——y-);
b

(diffeq = {y [t] == f[ty [t]],y [0] == starter }) // ColumnForm
Yot ==ry [t] (1- ¥
y [0] == starter
Here'sMathematicacranking out a formula for the solution:
] DSolve [diffeq,y [t],t ]

b E'' starter
Hy“ 1= b - starter  + E't starter H

Use separation of variables to explain where this formula comes from

OAnswer:
Look at the diffeq again:
| diffeq
e ylt] .
il ==ryrty (1-Y5),y (0] = starter )

Separate the variables:

Tt
newleft %‘
yitl (1- 4L
newright =r;
samediffeq = newleft == newright
y'(t]

R 0 15 I
yt] (1- Y

Integrate both sides frohitot:

DE.05.T2

t t
integratedeqn =I newleft dt ==j newright dt
0 0

-Log [y[0]] +Log [-b+y[0]] +Log(y[t]]-Log[-b+y([t]]==rt
Replacey[0] with the (cleared) starter value y[0]:

| neweqn = integratedeqn /.y [0] - starter

-Log [starter ] +Log[-b+stater ] +Log[y[t]]-Log[-b+y[t]]==rt
And solve fory[t]:

Clear [formulay 7;
ysol = Solve [neweqn,y [t]]
bE'' starter 1
b - starter  + E't starter

{{yit1-
There it is.

OT.2.d) Sometimes separation of variables is useless
Here are two new differential equations:

Clear [diffeq, y, t, f, r, starter 1;
flt,y 1= -21Sin [y +t] +Y,
(diffeql = {y' [t] == f[ty [t]],y [0] == starter }) // ColumnForm
y'[t]==-21Sin [t +y[t]]+y[t]
y[0] == starter
Clear [diffeq, y, t, f, r, starter 1;
fl.y_ 1 =y2+t
(diffeq2 = {y' [t] == f[ty [t]],y [0] == starter }) // ColumnForm
yo[t] ==t +y[t)?
y[0] == starter
Why is separation of variables useless for these two differential
equations?
OAnswer:

Look at the first one:
| diffeql
{y'[t] ==-21Sin [t +y[t]]+y[t],y [0] ==starter }

Try as you may, you can't separatey[t]'s from thet's.

Look at the second:
| diffeg2
{y'[t] ==t +y[t]% y [0] == starter }
This time you can separate the variables:

newleft =y’[t]-y[t1%;
newright =t;
samediffeq = newleft == newright

SY[t)Z ey [t] ==t
But when you integrate both sides frOnot, you get:

t t
| integratedeqn =J newleft dt ==j newright dt
o o

t 2
[eymizeyn a4
0
The integral on the left could not be done.

Mathematicahas its own obscure ways of solving this:
| DSolve [diffeq2,y  [t].,t ]
{{yit1- 7(<71>1"3 (AiryAiPrime -3¢t + (AiryBiPrime [(-1)¥3¢)

(—31/6 starter Gamma [%—] + (-3 3 Gamme{%]))/

(32"3 starter Gamma [%] +3 (-1)13 Gammé%”))/

(AiryA [ (-1 (AinyBi [ (-1)13 1)
(—31/5 starter Gamma [%] + (-3 3 Gammz{%}))/
, 1 / 2
(32 3 starter Gamma [3] +3 (-1t 3Gammf@§]))”

But the formula is overwhelming.
To get control of this one, go to flow plots andolve .
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T.3) The danger zoneWhere the unexpected sometimes
happens and separation of variables produces bogus
formulas

oT.3.a.0)
Here is an apparently innocent-looking differential equation:
Clear [diffeq, vy, t, f, r, starter 1

frt,y_ 1= 026t (Vl-yZ);

(diffeq = {y' [t] == f[t,y [t]],y [0] == 0.2 }) // ColumnForm
y'[t]==026t V1-y[t]?
y[0] ==0.2

You can try to generate your own formula for the solution of this
differential equation by separating the variables:

Separate and integrate:

starter = 0.2;

a = 0.26;

Clear [symbolyformula 1;
Tt

newleft vl

Vi-yt1?
newright =at;
t t
neweqn = [J newleft dt /.y [0] - starter ] ==J newright dt;

o o
ysol = Solve [neweqn,y [t]];

symbolformulay  [t_ ] = N[ExpandAll [y[t] /.ysol [11],6 1
1.Sin [0.201358 +0.13t 2]
Don't worry about the error messages.

This is the same as the formula delivereddye :
dsol =DSolve [{y'[t]==f[t,y [t]1],y [0]1==02}y[t],t];
N[ExpandAll [y[t] /.dsol [17]1,6 ]
Sin [0.201358 +0.13t 2]

Here is the way this formula plots out:

endtime = 5;

formulaplot = Plot [symbolformulay [t], {t, O, endtime },
PlotStyle -> {{Thickness [0.01 ], Red }}, AxesLabel -> {"[t", "y [t1"},
AspectRatio ->1/3];

[t
L0.2 1 2 3 4 \3

See this plot along with the flow plot for the given diffeq:

{ylow, yhigh } = {-0.2,1.0 };
{tlow, thigh } = {0, endtime };

solutionflowplot = Table [Arrow [{1,f [ty 1}, Tall - {ty },
VectorColor - Blue, ScaleFactor - 0.3, HeadSize - 0.15 ],
thigh - tlow high - ylow
{t. tlow, thigh, —@'—8——-}, {y. ylow, yhigh, y—g—Ty——}];
badplot = Show[formulaplot, solutionflowplot, Axes - True,
1

AxesLabel "t t 1"}, AspectRatio —
>t yomn P -) GoldenRatio

PlotLabel - "Bad" ];

>
e
e
4

The solution plot goes with the flow on the left but not on the right.
On the right, this plot is dead wrong.
Fix it.

OAnswer:

This plot is also out of sync with the differential equation:

DE.05.T3

Clear [diffeq, y, t, f, r, starter 1;

flt.y_ 1= 026t (VI-yZ);

(diffeq = {y' [t] == f[ty [t]],y [0] == 0.2 }) // ColumnForm
y'[t]==026t V1-y[t]?
y[0] == 0.2
Because

0.26ty/1-y[t]2=0fort=0

and because

y'[t] = 0.26 ty/ 1 - y[t] 2for t = 0,

no solution of this differential equation can ever go dowrt = 0.
This fact is key to understanding what the correct formula must be.

Take another look:
] hitsol = FindRoot [symbolformulay [t]==1, {t, 3 }]
{t >3.24475 }

marker = Graphics [{PointSize [0.07 ], Yellow, Point [{3.24,1 }1}1;
Show [badplot, marker 1;

yt] Bad

And look at the differential equation again:
| diffeq

{y'[t1==026t /1-y[t]?,y [0] ==02}

Wheny[t] < 1, it's automatic they[t] goes up because

y'[tl =+ 1-y[t]? > 0.

But it's impossible foy[t] to be > 1.

Reason: liy[t] > 1, them/ 1 - y[t]? is an imaginary number.

The upshot:

The true solutioy[t] steadily increases uny([t] gets tcl at
t=3.24519.

For t > 3.24,

the true solutioty[t] stays equal t1 becausiy[t] cannot be bigger than
1 andy[t] cannot go down.

Thus, fort > 3.24, y[t] is trapped equal t1.

Watch the true solution go with the flow:

] symbolformulay  [t]
1.Sin [0.201358 +0.13t 2]
b = 3.24;
Clear [truesolution 1;
truesolution [t]:=
truesolution [t1:=

1/;t > b;
symbolformulay [t] /;t <= b

truesolutionplot = Plot [truesolution [t], {t O, endtime }
PlotStyle -> {{Thickness [0.015 ], Red }},
AxesLabel -> {"t","y [t ]"}, DisplayFunction -> Ildentity  ];

goodplot = Show[truesolutionplot, solutionflowplot, Axes -> True,
1

GoldenRatio
PlotLabel  -> "Good", DisplayFunction -> $DisplayFunction ];

AxesLabel -> {"t","y [t]"}, AspectRatio ->
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Some folks call this a spline knotted at b.

Compare:
] Show[badplot, marker  ];
y(t] Bad

© o o 09

Grab both plots, align and animate slowly.

OT.3.a.ii) The danger zone and the gradient test for the danger zone

Is there a way of getting an advance alert to sticky situations like this
one?
OAnswer:

You bet your sweet bippy.

There is a way and it's very simple:
Clear [diffeq, vy, t, f, r, starter 1;

flt,y_ 1= 026t («/1_),2);

(diffeq = {y' [t] == f[t,y [t]],y [0] == 0.2 }) // ColumnForm
y'[t]==026t V1-y[t]?
y[0] ==0.2

You just look at the gradient f[t, y]:

Clear [gradf ];
gradf [t y_ T={(aflty 1, oyf[ty 1}

0.26ty
0.26 V1-y2, - ———_% __
{026 V1-y T }

Noticegradflt, y] has a singularity (blow up) y = 1 andy = —1.

| gradf [t,1 ]

{0, ComplexInfinity }
| gradf [t, -1]

{0, ComplexInfinity }

Yepper.
This tells you that the possible danger zone for this differential
equation consists of all points on the line

yitl=1
together with all points on the lines
ylitl = -1.

Take a gander:

DE.05.T3

{ydangerl, ydanger2 } = {-1.0,1.0 };
{tlow, thigh } = {0, endtime };
dangerzone = {Graphics [{Yellow, Thickness [0.01 1,
Line [{{tlow, ydangerl }, {thigh, ydangerl 33131,
Graphics [ {Yellow, Thickness [0.01 ],
Line [{{tlow, ydanger2 }, {thigh, ydanger2 }I131 )

dti
dangerlabel = {Graphics [Text ["DANGER", {—e—n%e—, ydangerl }]].
endtime
Graphics [Text ["DANGER", {T ydanger2 }]]}:
scalefactor = 0.25;
solutionflowplot = Table [Arrow [{1,f [ty 1}, Tal - {ty },
VectorColor - Blue, ScaleFactor - scalefactor, HeadSize -0.15 ],
X thigh - tlow
{t, tlow, thigh, T]
danger2 - ydangerl
{y. ydanger1, ydanger2, %}]
dangerflow = Show[solutionflowplot, dangerzone, dangerlabel,
1
Axes - True, AxesLabel - "ty [t 1"}, AspectRatio - —]
GoldenRatio
y[t]
1 > > DANGER > > >
IO N A A A
0.5 oSS / /
I A/
SO YA A A ¢
a5 a3 A
-0.5 I v AV / /
P A A A A
-1 > > DANGER > > > >
Compare:
| Show[dangerflow, truesolutionplot, marker, PlotLabel - "Good" 1;

yit] Good
10 >

vONON

-1 > > DANGER >

| Show[dangerflow, formulaplot, marker, PlotLabel - "Bad" ];

5
7‘
/
/

Anytime you see a hand or computer-generated formula plot out and
actually touch a danger zone, you should become very alert to the
possiblity of having to do a careful analysis.

aT.3.a.iii)

Here's a diffeq:
Clear [diffeq, y, f, t, starter 1;
flLy_ 1=-04 (Vy);

(diffeq = {y [t] == f[t,y [t]1],y [0] == starter }) // ColumnForm

Y[t] ==-04 /y[t]
y[0] == starter

Plot the danger zone for this diffeq.
OAnswer:
Calculate the gradient f[t, y]:

Clear [gradf ];
gradf [t y_ 1={aflty 1, oyf[ty 1}
{o. 2%
Vy
Note thaigradflt, y] blows up fory = 0.

| gradf [t,0 ]
{0, ComplexInfinity }

The singularities ogradflt, y] are all on the line
y=0.
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DE.05.T3

This curve is the danger zone for this diffeq. y”[t] al t = tdanger.
Here comes a plot: When this happens things can get out of hand!
endtime = 6; And they did in part i) above. In part i), the singularityy”’[t] at
{ylow, yhigh '} = {0, 4 }; y P ) p )' 9 44 [ ]
{tlow, thigh  } = {0, endtime }; tdanger: 3.24
dangerzone = Plot [0, {t, O, endtime }, PlotStyle - .
{{Thickness [0.01 1, Yellow }}, DisplayFunction - Identity 1; made the formula for the solution change¢ advanced though
dangerlabel = Graphics [Text ["DANGER", {fit:f—, ol tdanger: 3.24
scalefactor = 0.6; . s . -
flowplot = Table [Arrow [{L,f [ty 1}, Tal - {ty }, OT.3.b.i) When you're in the danger zone, your intuition may be
VectorColor - Blue, ScaleFactor - scalefactor, HeadSize -»031], thrown off
t 1 thih thigh - tlow | hih yhigh - ylow .
{t. tlow, thigh, 8 b {y. viow, yhigh. 8 Hi Here's another innocent-looking diffeq:
Clear [diffeq, y, t, f, starter 1;
Show[ﬂowplot, dangerzone, dangerlabel, Axes - True, fr,y 1 = yzxa;
) 1 ) o
Axeslabel ~ {"C\7y (11"}, AspectRatio > e e —] (diffeq = {y' [t] == T [ty [t11,y [0] == 0}) // ColumnForm
N yIt) =y [t]??
211NV e
I RN NN, Go after a formula for the solution by separating variables:
AN NN Clear [yformula 1;
SN NN N NN N It
OSSN S S S a newleft = Y
TR ™~ ™ ™~ ™~ s s~ ) y
e e newright = 1;

o= ?\NGEE{ :3:4: ;S:G*t

t t
neweqn = (j newleft dt /.y [0] » 0) ==j newright dt;
Anytime you see a solution hit this danger zone, you have to be on ° 0

ysol = Solve [neweqn,y [t]1];

guard. formulay [t ] =y[t] /.ysol [1]
oT.3.a.iv) ©
. 27
Here's another diffeq Now plot:
Clear [diffeq, y, f, t, starter 1; endtime = 3;
fIL,y_ 1 =04Sin [t] +y?; solutionplot =Plot [formulay [t1, {t O, endtime 3},
PlotStyle - {{Thickness [0.015 ], Red }}, AxesLabel - {"t","y [t]1"},
(diffeq = {y [t] == f[ty [t]],y [0] == starter }) // ColumnForm . 1
VL] == 04Sin [t]+y[t]? AspectRatio am],
y [0] == starter
Plot the danger zone for this diffeq.
OAnswer: yit]
. 0.6
Calculate the gradient f[t, yI: os
Clear [gradf ]; 0.4
gradf [ty 1={(oflty 1, oyf[ty 1} 0.3
{04Cos [t],2y } 0.2
Note thaigradfit, y] never blows up for finittory. 0.1
+ t
This tells you that this diffeq has no danger zone. So there is nothin 0.5 1 LS5 2 25 3 . .
y g g 9 And you check by showing this solution plot with a flow plot:
pIOt- scalefactor = 0.4,
H . : : ' . {ylow, yhigh '} = {0, 1 };
This differential equation can't reach out and surprise you. (tlow, thigh  } - {0 endtime }:
oT.3.a.v) solutionflowplot =Table [Arrow [{1,f [ty 1}, Tal - {ty },
Try to exp|ain Why the gradient test fOI’ the danger zone WOI’kS VectorColor - Blue,_ ScaleFactor - scalefactor, HeadSizg -0.15 ],
OAnswer: {t, tlow, thigh, Me;“ﬂv—] {y. ylow, yhigh, ZM—Sﬂ}];
Go with a cleared diffeq:
Show[solutionplot, solutionflowplot, Axes - True,
Clear [diffeq, y, t, f, r, starter 1; 1
(diffeq = {y' [t] == f[ty [t]],y [0] == starter }) // ColumnForm AxesLabel - {"t","y [t]1"}, AspectRatio - 7]
GoldenRatio
y'rtl==fity [tjj yit]
y [0] == starter 1.4
Because 1'i
y'[t] = fIt, yltl], 0.8
. 0.6
the chain rule from vector calc guarantees that 0.4
0.2

y'[t] = gradfft, y[t]]+ {1, y'[t]}.

That little dot is a dot product.

.5 1 1.5 2 2.5 3
The solution is going with the flow.

Now here's the key point: Is there anything wrong here?

If {t, y[t]} hits the danger zone (i.e. a singularitygradft, y[t]]) at a DAnswer:

timet = tdanger, Only one thing:

then the fact that There is another solution with the same starter data:
y”[tdanget = gradftdanger, ytdanget]« {1, y [tdange}} This is the silly solution

opens up the possibility of a singularity of

123



y[t]=0forallt= 0.

Thisy[t] certainly solves the differential equation:
| diffeq /. {y[t1-0,y '[t] -0,y [0] >0}
{True, True }

So the solutiony[t] = 0 deserves to be plotted too:

Clear [altsol 1;
altsol [t ] =0;

altsolplot = Plot [altsol [t], {t, O, endtime }
PlotStyle - {{Thickness [0.02 1, Red }}, DisplayFunction - |dentity 1;
bummer = Show[altsolplot, solutionplot, solutionflowplot, Axes - True,
1
AxesLabel - {"t', " t 1"}, AspectRatio - —_—
{ v P GoldenRatio

DisplayFunction

- $DisplayFunction B

You can see that the alternate silly solution is also going with the
horizontal flow along thix-axis.

OT.b.ii) The danger zone strikes again

Take another look at the plot of the two solutions in part i) above:
] Show[bummery;

=

© o e

l 0.5 1 1.5 2 2.5 3
When you throw your cork into this flow &, 0}, the cork cannot
float away in two directions simultaneously.
Doesn't this blow the hell out of thinking of solution plots as paths of
floating corks?

OAnswer:
Yes it does. But before you give up on the idea of thinking of solution
plots as paths of floating corks, check the danger zone for this
differential equation:

Clear [diffeq, y, t, f, r, starter 1
fry. 1 =y%
(diffeq = {y' [t] == f[t,y [t]],y [0] == 0}) // ColumnForm
Y[ty ==y(t]?3
y[0] ==
| gradf [ty 1=fafity 1, oyf[ty 1}
2
v
3y

There is a big fat singularity igradfix, y] at y = 0,
So the danger zone is the liy[t] = O:

ydangerous = 0;
dangerzoneplot = Graphics [{Thickness [0.005 1,

Yellow, Line  [{{0, ydangerous 1}, {endtime, ydangerous 33131
dangerlabel = Graphics [Text ["DANGER", {0.7 endtime, ydangerous 11

Show[bummer, dangerzoneplot, dangerlabel,
PlotLabel - "Flow with Danger Zone" 1;

DE.05.T3-G1

0.5 1 1.5 2 2.5 3

The reason that your flow intuition doesn't quite work for this diffeq is
that the cork was thrown into the flow in the danger zone. In fact, the
alternate solution stays in the danger zone all the time. The other one
hustles its buns away from the danger zone.

OT.3.b.jii)

Does this mean that when you are going with a differential equation
with no danger zone, then you are free to use your intuition thinking
of solution plots as the paths of floating corks?

OAnswer:
Yes it does.
Fancy diffeq folks say that when there is no danger zone, solutions
exist and are unique.

DE.O5 First Order Differential Equations
Give It a Try!

G.1) Quickies

O0G.1.a)
Here's an autonomous diffeq:

Clear [diffeq, y, t, f, starter 1;
a = Random[Real, {2, 3 1}];

b = Random[Real, {5,7 }1;
¢ = Random[Real, {9, 11 }1];
flt,y_ 1=007 (@a-y)(y-b)(-c);
(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
y/[t] ==0.07 (228941 -y[t]) (-9.92898 +y[t]) (-6.15197 +y[t])
y [0] == starter
Here is the phase line for this diffeq shown with plots of four solutions
of this diffeq.
{ylow, yhigh '} = {0, 13 };
{tlow, thigh }={0,71%;
Clear [y1,y2,y3,y,t 1;

{starterl, starter2, starter3, starter4
endtime = thigh;
ylft_1=y[t] /.

NDSolve [diffeq /. starter
y2[t_1=y[t] /.

NDSolve [diffeq /. starter
y3[t_1=y[t]/.

NDSolve [diffeq /. starter
yalt 1=y[t]/.

NDSolve [diffeq /. starter

}={04,b -02b +02,¢c +3};

- starterl, y [t1, {t O, endtime Y1011
- starter2, y [t1, {t O, endtime 31011,
- starter3, y [t1, {t O, endtime Y1011
- starter4, y [t]1, {t O, endtime }]1[1T;

solutionplots =Plot [{yl[t],y2 [t],y3 [t],y4 [t]}, {t O, endtime 3},
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - Identity 1;
phaseline = PhaseLine [f [t,y 1, {y, ylow, yhigh }, Blue, -17;

setup = Show[solutionplots, phaseline,

Axes - True, AxesLabel - {"t","y" }, PlotRange - {ylow, yhigh 3},

AspectRatio - , DisplayFunction - $DisplayFunction ];

GoldenRatio
y

N B O ©

t

2 4 6
That's the phase line for this diffeq on the left.
What's the relationship between the arrowheads on the phase line and
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the behavior of the solutions?
Which dot on the phase line signals the place where you expect
extreme sensitivity to errors in starter data (1%

0G.1.b)
Here's an autonomous diffeq:
Clear [diffeq, y, t, f, starter 1;
frt,y_ 1 =09 (1- %) (1- %) (1- %);
(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm

Y [t]==09 (1- XLl (1- YLy (1- Yl

y [0] == starter

Here is the phaseline for this diffeq shown with the plot of two curves:
{tlow, thigh }={0,10 };

{ylow, yhigh } = {0, 10 };

phaseline = PhaseLine [f [t,y 1, {y,ylow, yhigh }, Blue, -17;

Exp[09t ] 157 + 8Exp [0.9t ]
curveplots = Plot [{ s 1
0.2 +0.125Exp [091 ] 39 + Exp[0.9t ]
{t, tlow, thigh }, PlotStyle -

{{Thickness [0.01 ], Red }, {Thickness [0.01 ], GrayLevel [0.04 1}},
DisplayFunction - |dentity ];

Show [ curveplots, phaseline, AxesLabel - "ty [t1'y,
AspectRatio - 1, PlotRange - {{tlow -2, thigh 1}, {ylow, yhigh }},
DisplayFunction - $DisplayFunction 1;

t
0[ ]

.7 746 8 10
One of these curves looks like it might be a reasonable approximatior
of a solution of the diffeq.
The other does not.
Which is which?

0G.1.c)
Here's another autonomous diffq:
Clear [diffeq, vy, t, f, starter 1;

a = Random[Real, {2, 3 }1;
b = Random[Real, {5,7 }1;
¢ = Random[Real, {9, 11 }1;
flt,y 1=007 (@a-y)(y-Db)(y-c)

(diffeq = {y' [t] == f[ty [t]],y [0] == starter }) // ColumnForm

y'[t]==007 (290777 -y[t]) (-10.5619 +y[t]) (-5.71538 +y[t])
y [0] == starter

Here is the phase line for this diffeq shown with plots of four solutions

of this diffeq.
{ylow, yhigh '} = {0, 13 };
{tlow, thigh }={0,7}

Clear [yl,y2,y3,y,t 1;
{starterl, starter2, starter3, starter4
endtime = thigh;
ylpt1=y[t1 /.

NDSolve [diffeq /. starter
y2[t_1=y[tl/.

NDSolve [diffeq /. starter
y3[t_1=y[t] /.

} = {0.4, 4.0, 4.7, 13.0 )

- starterl, y [t1, {t, O, endtime }101T;

- starter2, y [t1, {t O, endtime }I1[1I;

NDSolve [diffeq /. starter - starter3, y [t], {t O, endtime  }]1[11;
yAIt_1=yI[t] /.
NDSolve [diffeq /. starter - starter4, y [t1, {t O, endtime }I[1I;

solutionplots =Plot [{yl[t],y2 [t],y3 [t],y4 [t]}, {t O, endtime }
PlotStyle - {{Thickness [0.015 ], Red }}, DisplayFunction - |dentity 1;
phaseline = PhaseLine [f [ty 1, {Yy, ylow, yhigh }, Blue, -11;

setup = Show[solutionplots, phaseline,

Axes - True, AxesLabel - {"t", "y"
1

GoldenRatio

}, PlotRange - {ylow, yhigh 3},

AspectRatio - , DisplayFunction - $DisplayFunction ];

DE.05.G1

N B O ©

3 t

2 4
That's the phase line for this diffeq on the left. Unfortunately, the
solution plots do not mirror all the information given by the phase
line. Fill in the question marks in the code below and then run so that
the resulting plot does a pretty good job of mirroring all the
information given by the phase line. Throw in more than four
solutions if you like.

XX
Clear [yl,y2,y3,y,t 1;
{starterl, starter2, starter3, starter4
endtime = thigh;

}={?.?22?2 &

yl[t_ ] = y[t] /. NDSolve [

(diffeq /. starter ->starterl ),y [t], {t O, endtime 00111,
y2[t_1 = y[t] /. NDSolve [

(diffeq /. starter ->starter2 ),y [t], {t O, endtime }1L021];
y3[t_1 = y[t] /. NDSolve [

(diffeq /. starter ->starter3 ),y [t], {t O, endtime 3}1[[1]];
y4[t_1 = y[t] /. NDSolve [

(diffeq /. starter ->starter4 ),y [t], {t O, endtime 10021

solutionplots =

Plot [{yl1[t],y2 [t],y3 [t],y4 [t]1}, {t O, endtime }, PlotStyle ->

{{Thickness [0.015 ], Red }}, DisplayFunction -> Identity  1;
phaseline = PhaseLine [f [t,y 1, {y,ylow, yhigh }, Blue, -17;
setup = Show[solutionplots,

phaseline, Axes -> True, AxesLabel -> "ty },
1

PlotRange -> {ylow, yhigh , AspectRatio S
9 b yng } P GoldenRatio

DisplayFunction -> $DisplayFunction ]:

0G.1.d.i)

Here's a new autonomous diffeq containing some partially random
coefficients:
Clear [diffeq, y, t, f, starter 1;
a = Random[Real, {1,2 }];
b = Random[Real, {1,3 }1;
¢ = Random[Real, {5,7 }1;

d Random[Real, {9, 11 }];
Hev - (-3 (- 2) (- )
b c d
(diffeq = {y' [t] == f [ty [t]],y [0] == starter }) // ColumnForm
y’[t] ==141603 (1-0.522989y [t]) (1-0.18149y [t]) (1-0.0926319y [t ])
y[0] == starter

Look at this plot:
{ylow, yhigh '} = {0, 13 };
fcurve = ParametricPlot
PlotStyle
phaseline = PhaseLine [f [t,y ], {Yy, ylow, yhigh

[{fit.y 1.y}, {y,ylow, yhigh 1},

- {{Thickness [0.01 ], Red }}, DisplayFunction - Identity 1;
}, Blue, 0 1;

setup = Show[fcurve, phaseline, AxesLabel - Ity 1Y),
1

AspectRatio » ———
GoldenRatio

, DisplayFunction - $DisplayFunction ] ;

o5 1 LY
Rerun both cells a couple of times.
Points on the curve are of the form:
| ¢(fity 1.y}
{1.41603 (1 -0.522989y ) (1-0.18149y ) (1-0.0926319y ),y }
But the real issues here are:
— How are the arrowheads on the phase line related to the plot of the
curve?

-2 -1.5 -1 -0.5
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- How are the dots on the phase line related to the plot of the curve?
— Remembering that y= f[t, y], explain why it had to turn out this
way.

0G.1.d.ii)

Keep everything the same as in part i) above, but throw in plots of the
solutions that start on the dots on the phase line:

Clear [y1,y2,y3,y,t [;
{starterl, starter2, starter3 }={(b,c,d };
endtime = thigh;
ylt 1=yf[t] /.
NDSolve [diffeq /. starter - starterl, y [t1, {t, O, endtime }101T;
y2[t_1=y[tl/.
NDSolve [diffeq /. starter - starter2, y [t1, {t, O, endtime }101T;
y3[t_1=yl[t]/.
NDSolve [diffeq /. starter - starter3, y [t1, {t 0, endtime }1[11;
solutionplots =
Plot [{yl[t],y2 [t],y3 [t]1}, {t O, endtime 3}, PlotStyle -
{{Thickness [0.015 ], HotPink }}, DisplayFunction - Identity 1;

Show[solutionplots, setup, Axes - True, AxesLabel - {"t","y" 1},
1
PlotR low, yhigh , A tRati B —
otRange - {ylow, yhig| }, AspectRatio - GoidenRatio
DisplayFunction - $DisplayFunction ] ;
y
1
-2 2 4 6 t
Got any idea why that happened?
If so, then give your idea.
0G.l.e)
Here are four diffegs:
Clear [diffeql, y, t, f1, starter, r 1;
flpt,y 1 =38 (y-1)(y-2) -t
(diffeql = {y' [t] == fl [ty [t]],y [0O] == starter }) // ColumnForm
y[t]==-t+38 (-2+y[t]) (-1+y[t])
y [0] == starter
Clear [diffq2, y, t, f2, starter, r 1
f2[t,y ] =38E-%9;
(diffeq2 = {y' [t] == f2 [ty [t]],y [0] == starter }) // ColumnForm
y'[t]==38E 09y [t]
y [0] == starter
Clear [diffeq3, vy, t, f3, starter, r 1;
By 1=38(-1(-2)-n
(diffeq3 = {y' [t] == f3 [ty [t]],y [0] == starter }) // ColumnForm
y'[t]==-r+38 (-2+y[t]) (-1+y[t])
y[0] == starter
Clear [diffeq4, y, t, f4, starter, r 1;
fA[t,y 1 =238Sin [yl -t +r
(diffeqd = {y' [t] == f4 [t,y [t]],y [0] == starter }) // ColumnForm

y'[t]==r -t +3.8Sin [y[t]]
y[0] == starter

Which of these diffeqs are autonomous?

Which of the autonomous diffeqs contains an extra parameter?

Which of the non-autonomous diffegs contains an extra parameter?
O0G.1.fi)

Here's a new diffeq:

Clear [diffeql, y, t, f, starter, r 1;
flt,y 1 =Sin[t](y - Cos[t]) (y - 0.85);
(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
y'[t] ==Sin [t] (-0.85 +y[t]) (-Cos[t] +y[t])
y [0] == starter
Look at the plot of the phase line that corresponds-t2.9:
time =2.9;
{ylow, yhigh '} = {-3,5 };
Clear [phaseline 1;
phaseline [t_ ] :=PhaseLine [f[t,y 1, {y,ylow, yhigh }, Blue, t 1;

DE.05.G1

setup = Show[phaseline [time ], Axes - True,
PlotRange - {{0, time +1}, {ylow, yhigh }}, AxesLabel - {"t". "y [t]"},

1
AspectRatio  » ———————1;
GoldenRatio

Imagine that plots of solutiongty of this diffeq come in from the left
and pass through the plotted phase line.

Some of them are going up as they cross over this line. Others are
going down.

Read the plot to get rough estimates of the cutoff points between those

that go up and those that go down as they pass through the plotted
phase line.

0G.1.f.ii)

Keep everything the same as in part i) above:
Clear [diffeq, vy, t, f, starter, r 1;
flt,y_ 1 =Sin[t] (y - Cos[t]) (y - 0.85);

(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
y'[t] ==Sin [t] (-0.85 +y[t]) (-Cos[t]+y[t])
y [0] == starter
Look again at this plot of the phase line that corresponds-t@.9:
time =2.9;

{ylow, yhigh '} = {-3,5 };
Clear [phaseline 1;
phaseline [t_1:=PhaseLine [f[ty 1, {y,ylow,yhigh } Blue,t 1;

setup = Show[phaseline [time ], Axes - True,
PlotRange - {{0, time +1}, {ylow, yhigh }}, AxesLabel - {"t. "y [t]"},

1
AspectRatio  » ———————1;
GoldenRatio

-3
Now look at this:

| frtmey 1

0.239249 (-0.85 +y) (0.970958 +y)
Use what you see to improve your estimates from part i) immediately
above.

oG.1.f.iii)
Stay with the same diffeq:
Clear [diffeq, v, t, f, starter, r 1;
frt,y 1 =Sin[t] (y - Cos[t]) (y - 0.85);
(diffeq = {y' [t] ==f[t,y [t1],y [0] == starter }) // ColumnForm
y'[t] ==Sin [t] (-0.85 +y[t]) (-Cos[t] +y[t])
y[0] == starter
Look at this plot of the phase line that corresponds-td.p:
time =4.2;

{ylow, yhigh '} = {-3,5 };
Clear [phaseline 1];
phaseline [t_1]:=PhaseLine [f[ty ], {y,ylow, yhigh 1}, Blue,t 1;

setup =Sh0w[phase|ine [time ], Axes - True,

PlotRange - {{0, time +1}, {ylow, yhigh }}, AxesLabel - {"t". "y [t]"},
1
AspectRatio  » —————1;
GoldenRatio
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vt The plotted point has coordinates
4 {time, ytimg
3 as defined in the code above.
i Imagine that the plot of a solutiofityof this diffeq comes in from the
; ; " . - left and passes through the plotted point.
-1 Look at this quick calculation oftime, ytimd:
-2 | f [time, ytime ]
3 . L . 5.92669
Imagine that plots of solutiongty of this diffeq come in from the left Remembering that
and pass through the plotted phase line. yIt] = f[% [tl]
Some of them are going up as they cross over this line. Others are It =TIL YLt . )
going down use this quick calculation to determine whether:
) . . a) The plot of yt] comes in from the left and down to this point.
Read the plot to get rough estimates of the cutoff points between thos O)r' P w P
that go up and those that go down as they pass through the plotted : . . .
go up 9 yp 9 P b) The plot of yt] comes in from the left and up to this point.
phase line.
. oG.1.g.ii
OG.f.iv) g _) )
Keep everything the same as in part iii) above: Stay with Fhe same diffeq:
] Clear [diffeql, vy, t, f, starter, r 1;
Clear [diffeql, y, t, f, starter, r 1; frt,y 1 =38EC00t (y_ty;
flt,y_ 1 =Sin[t] (y - Cos[t]) (y - 0.85); Y = 3. :
(diffeq = {y' [t] == f[t,y [t]1],y [0O] == starter }) // ColumnForm (diffeq = {y' [t] == f[t,y [t1],y [0] == starter }) // ColumnForm
y/[t]==Sin [t] (-0.85 +y[t]) (-Cos[t] +y[t]) , 001t
t] ==38E -t t
y[0] == starter 5[&)]]:: crter (-t+ylt])
Look again at this plot of the phase line that corresponds th2: Look at this new plot:
time = 4.2; . .
{ylow, yhigh } = {-3,5}; ;I:inr:e =—5§é'
Clear [phaseline ]; ; C A o . ) . .
phaseline [t ] := PhaseLine [f [ty 1, {y,ylow, yhigh } Blue, t 1; pointplot = Graphics [{Red, PointSize  [0.03 ], Point [{time, ytime }1}1;
- ) setup =
setup = Show[phasellne ttime 1, X . Show[pointplot, Axes - True, PlotRange - {{0, time +1}, {0, ytime +1}},
Axes -> True, PlotRange -> {{0, time + 1}, {ylow, yhigh }}, 1
AxesLabel -> {"t", "y [t 1"}, AspectRatio -> ;] AxesLabel > {'t" "y [t1"}, AspectRatio > GoldenRatio ]
GoldenRatio
y[t] y[t]
5
4 4
3 L ]
2 3
1

1 3 3 i R
-1 1
-2
t
3

- 1 2 3 4 5 6
Now look at this: The plotted point has coordinates
| frtime,y 1 {time, ytimg

-0.871576 (-0.85 +y) (0.490261 +y) as defined in the code above.

Use what you see to improve your estimates from part iii) Imagine that the plot of a solutiofityof this diffeq comes in from the
immediately above. left and passes through the plotted point.
. Look at this quick calculation:
0G.1.9.i) ; )
| f rtime, ytime ]
-8.46499
Remembering that

yltl = f[t, y[tl,

Here's a new diffeq:
Clear [diffeql, y, t, f, starter, r 1
flt,y 1 =38E%0t (y_t);

(diffeq = {y' [t] == fILy [t11,y [0] == stater 3}) // ColumnForm use this quick calculation to determine whether: . .
v t] -~ 38E0OL (¢ Ly[t]) a) The plot of yt] comes in from the left and down to this point.
y[0] == starter Or:
Look at this plot: b) The plot of yt] comes in from the left and up to this point.
time =3.9;
ytime =5.4; . . ' . .
pointplot = Graphics [{Red, PointSize  [0.03 ], Point [{time, ytime }1}1; G2) Readlng dlffeq S USIng ﬂOW pIOtS and phase ||neS
setup = |:|G.2.a.i)
Show[pointplot, Axes - True, PlotRange - {{0, time:zL +1}, {0, ytime +1}}, Here's a differential equation.
AxesLabel - {"t","y [t]"}, AspectRatio - W]' Clear [diffeq, f, t, y 1
yit] flt,y_ 1=03y (y-1)(y -3);
6 ° (diffeq = {y' [t] == f[ty [t]1], y [0] == starter }) // ColumnForm
® Yy [t]==03 (-3+y[t]) (-1+y[t])yI[t]
4 y[0] == starter
3 Notice right away that the right hand side has no explicit dependence
2 ont.
1
1 3 3 i t

127



Here's the formula for the functioftfy] that was used to define the
diffeq:

I fity ]

03 (-3+y) (-1+y)y
Use what you see to determine whether or not this diffeq is
autonomous.

0G.2.a.ii)
Stay with the same diffeq as in part i):
Clear [diffeq, f, t, y 1;
flty_ 1=03y (y-1)(y -3);
(diffeq = {y [t] == f[y[t]], y [0] == starter }) // ColumnForm
y'[t]==fly[t]]

y [0] == starter
And look at the corresponding flow plot:
{tlow, thigh }={0,71};
{ylow, yhigh } = {-0.5,35 };
jump =0.5;

flowplot = Show[Table [Arrow [{1,f [ty 1}, Tal - {ty },
VectorColor - Blue, ScaleFactor - 0.75, HeadSize -0.3 1,
{t, tlow, thigh, jump }, {y, ylow, yhigh, jump }1, Axes - True,
AxesLabel - {"t,"y"  }1;
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How does the flow plot help to confirm thdt,fy] has no dependence
on t?
0G.2.a.iii)
Stay with the same diffeq as in part i):

Clear [diffeq, f, t, y 1

fl,y_ 1 =03y (y-1)(y-3);

(diffeq = {y' [t] == f[t,y [t]], y [0] == starter }) // ColumnForm
Yy [t]==03 (-3+y[t]) (-1+y[t])y[t]

y [0] == starter
And look at the formula for the functioiftf y] that was used to define
the diffeq:

I fity 1

03 (-3+y) (-1+y)y
And a plot of ft, y]
Plot [f [ty 1, {y, -1, 4}, PlotStyle - {{Thickness [0.01 ], Blue }},

1

AxesLabel "y, t, "}, AspectRatio _—
- fty 13 P _) GoldenRatio ]

flt,yl

Use the what you see to predict what solution curves are doing for
starting values [@0] with:

a) ¥0] <0
b) yoj=0
c) O<y[0l<1
d) yoj=1
e) 1<y[0]<3
f) ¥0] =3
9) 3<yl[0]
0G.2.a.iv)
Stay with the same diffeq as in part i):
Clear [diffeq, f, t, y 1

flt,y 1=03y (y-1)(y -3);

(diffeq = {y [t] == f[ty [t]], y [0] == starter }) // ColumnForm

DE.05.G2

Y [t]==03 (-3+y[t]) (-1+y[t])y[t]
y[0] == starter
And look at a flow plot:

] Show(flowplot 1;
y
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Say how the flow plot helps to confirm your answers to the part iii)
immediately above.

0G.2.a.v)

Stay with the same diffeq as in part i):
Clear [diffeq, f, t, y 1;
flty 1=03y (y-1)(y -3)

[

(diffeq = {y' [t] == f[t,y [t]], y [0] == starter }) // ColumnForm
Yy[t]==03 (-3+y[t]) (-1+y[t])y[t]
y[0] == starter
Here's the phase line for this diffeq.
Clear [pline 1;
phaseline =

Show[PhaseLine [f [ty 1, {y,ylow -1,yhigh +2},Blue, -051,
Axes - True, AxesLabel - {", "y" }, Ticks - {None, Automatic 1},
PlotRange - {{-1, thigh }, {ylow -1, yhigh +2}}];
y
E
f

Say how the phase line helps to confirm your answers to the part iii)
above.

0G.2.a.vi)

Stay with the same diffeq as in part i):

Clear [diffeq, f, t, y 1;
flt,y_ 1=03y (y-1)(y -3)

(diffeq = {y' [t] == f[ty [t]], y [0] == starter }) // ColumnForm
Yy [t]==03 (-3+y[t]) (-1+y[t])yI[t]
y[0] == starter

Here are some samples of solution curves shown with the phase line:

endtime = 3;
Clear [sol, starter 1;
sol [t_, starter_ 1:=yI[t] /.NDSolve [
{y’[t1==f[ty [t]],y [0] ==starter },y [t], {t tlow, thigh 31011
{starterl,
starter2, starter3, starter4, starter5, starter6, starter7 } =
{-0.2,0.0,0.1, 1.0, 2.8, 3.0,31 }

solutioncurves = Plot [Evaluate [{sol [t, starterl 1.
sol [t, starter2 1, sol [t, starter3 1, sol [t, starter4 1.
sol [t, starter5 1, sol [t, starter6 1, sol [t, starter7 131,
{t, 0, endtime }, PlotStyle - {{Thickness [0.01 ], Red }},
PlotRange - {ylow -1, yhigh +2},
AxesLabel - {"t',"y [t]"}, DisplayFunction - Identity  1;

1

Show[solutioncurves, phaseline, AspectRatio B T
GoldenRatio

DisplayFunction - $DisplayFunction ] ;
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Does this plot agree or disagree with what you decided above?
Write a summary of what the advantages and disadvantages of each
the ways of looking at the behavior of solutions are.

0G.2.b.i)

Here's a new differential equation.
Clear [diffeq, f, t, y 1;
frt,y 1=13y (y-15)(y -30) + 23Sin [t];
(diffeq = {y [t] == f[ty [t]], y [0] == starter }) // ColumnForm
y'[t]==23Sin [t]+13 (-3. +y[t]) (-15 +y[t])y][t]
y[0] == starter
Is this diffeq autonomous?

0G.2.b.ii)

Stay with the same diffeq:

Clear [diffeq, f, t, y 1
frt,y 1=1213y (y-15)( -30) +23Sin [t];

(diffeq = {y' [t] == f[ty [t]], y [0] == starter }) // ColumnForm
y'[t]==23Sin [t]+13 (-3. +y[t]) (-15 +y[t])y[t]
y [0] == starter

And look at a flow plot for this diffeq:

{tlow, thigh }={0,9};
{ylow, yhigh } = {-0.5,35 };
jump =0.5;

flowplot = Show[Table [Arrow [{1,f [t,y 1}, Tal - {ty },
VectorColor - Blue, ScaleFactor - 0.3, HeadSize - 0.3 ],
{t, tlow, thigh, jump }, {y, ylow, yhigh, jump }1, Axes - True,
AxesLabel - {"t", "y" 1

How does the flow plot show thdtfy] depends otf?
How does this flow plot help to confirm your response to part i)
immediately above?

0G.2.b.jii)

Stay with the same diffeq:

Clear [diffeq, f, t, y 1;

flt,y 1 =13y (y-15)(y -30) +23Sin [t];

(diffeq = {y [t] == f[ty [t]], y [0] == starter }) // ColumnForm
y'[t]==23Sin [t]+13 (-3. +y[t]) (-1.5 +y[t])y[t]

y[0] == starter

Look at this plot of [0, yI:

toplot =

Plot [f [0,y 1, {y, ylow, yhigh }, PlotStyle - {{Thickness [0.01 ], Blue }},
1
AxesLabel "y, f t, "}, AspectRatio _—
~ fy 13 P GoldenRatio

PlotRange - {-5,5 }, PlotLabel

fit,y] t =0
4
2
1 v y

2

—)"t = 0"];

-4
And look at this plot of 3.0, yi:

tdplot =Plot [f[42,y 1,

{y, ylow, yhigh }, PlotStyle - {{Thickness [0.01 ], Blue }},
1

AxesLabel "y t, "}, AspectRatio —_—
- fy 13 P ? GoldenRatio

PlotRange - {-5,5 }, PlotLabel ~ »"t = 42" [;

DE.05.G2-G3

And look at this plot of [i6.0, yi:

téplot =Plot [f[6.0,y 1,

{y, ylow, yhigh }, PlotStyle - {{Thickness [0.01 1, Blue }},
1

AxesLabel "y f t, "}, AspectRatio _
- tty 13 P ? GoldenRatio

PlotRange - {-5, 5 }, PlotLabel 5"t = 6.0" ];
flt,yl t =60

4

2

N
-4

What does the first plot tell you about the initial behavior of solutions
ast advances away from 0?

What does the second plot tell you about how solutions behave as
passes through 4.2?

What does the third plot tell you about how solutions behate as
passes through 6.0?

G.3) Reacting to plots

0G.3.a.)
Here's a simple linear exponential differential equation.
Clear [diffeq, v, t, f, starter 1;

flt,y 1 =1+t -y,

(diffeq = {y' [t] ==f[t,y [t1],y [0] == starter }) // ColumnForm

y'[t]==1+t-y[t]

y[0] == starter
Here's a plot showing three solutions starting at

y0] = 4, y{0] = 0, and y0] = —4.0:

Clear [y1,y2,y3,t 1
endtime =5;
{starterl, starter2, starter3
ylft_1=y[t] /.

NDSolve [diffeq /. starter
y2[t_1=y[t]/.

NDSolve [diffeq /. starter
y3[t_1=y[t] /.

NDSolve [diffeq /. starter

}={-4,0,4 };
- starterl, y [t1, {t O, endtime 31011,
- starter2, y [t1, {t, O, endtime Y1011

- starter3, y [t1, {t O, endtime 31011,

solutionplot = Plot [(yl [t1,y2 [t],y3 [t1}, {t O, endtime }
1
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio B
GoldenRatio
PlotRange - All, AxesLabel - {'t', ™ }];
4
2
2 3 7 5!
-2
-4

That middle line is just[y] = t.

When you go with any starting valugy between-4 and 4, how do

you expect the corresponding solution to plot out? Test your ideas by
playing with the plot above.

Describe in some detail what you expect to happen to it ast gets largel
and larger.

0G.3.a.ii)

Stay with the same differential equation and look at the same plot
shown with the flow plot for the differential equation:

scalefactor =04,
{ylow, yhigh '} = {-6,6 };
flowplot = Table [Arrow [{1,f [ty 1}, Tall - {ty },
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VectorColor - Blue, ScaleFactor - scalefactor, HeadSize -»041],
{t, 0, endtime, end%}v {y. ylow, yhigh, M}]
Show solutionplot, flowplot 1;
6 ——
\\\\\‘
4\§‘\ \ -
-
= =
t
-2
-4
-6
Say how this flow plot confirms your answer to part i)
0G.3.a.iii)
Stay with the same differential equation:
Clear [diffeq, vy, t, starter 1;
(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm

yt]==1+t-y[t]

y [0] == starter
Ask Mathematicaor a formula for solutions:

| Dsolve [diffeq,y [t].t ]

{{y[t] >E" (stater +E' t)}}
Analyze this formula to come up with a confirmation of what you said
in part i).

0G.3.b.i)
Here's another forced exponential differential equation.
Clear [diffeq, y, t, f, starter 1;

flt,y 1 =-t'2 +vy;

(diffeq = {y' [t] == f[ty [t]],y [0] == starter }) // ColumnForm
y[t)==-t2+y[t)
y[0] == starter

Here's a plot showing five solutions starting @ y= 0, y{0] =
y[0] = 2, y{0] =3 and Y0] =

Clear [starter 1;
Clear [yl,y2,y3,y4,y5,t 1.
endtime = 3;
{starterl, starter2, starter3, starter4, starter5
ylpt1=y[t1 /.

NDSolve [diffeq /. starter
y2[t_1=y[t]/.

NDSolve [diffeq /. starter
y3[t_1=y[t]/.

NDSolve [diffeq /. starter
yat 1=yl[t] /.

NDSolve [diffeq /. starter
yS5[t_1=y[t] /.

NDSolve [diffeq /. starter

}=40,1,2,384 }
- starterl, y [t1, {t, O, endtime Y1011,
- starter2, y [t1, {t, O, endtime }101T;
- starter3, y [t1, {t O, endtime }I[1I;
- starterd, y [t1, {t, O, endtime }1011;

- starter5, y [t]1, {t O, endtime }I1[1I;

solutionplot = Plot [{yl [t1,y2 [t],y3 [t1,y4 [t],y5 [t1},
{t, 0, endtime }, PlotStyle - {{Thickness [0.008 ], Red }},
1
AspectRatio -» —————, PlotRange - All, AxesLabel - "t }];
GoldenRatio

What you are seeing here is what some fancy dudes call a "bifurcation.”

The solutions fall into two families: Those that eventually go up and
those that eventually go down.

Experiment with your own plots to try to come up with an estimate of
initial value (starter) on[¥] that gives the break between the two
families. Show off your answer with a convincing plot.

0G.3.b.ii)

Stay with the same differential equation and look at the plot in the
above part shown with the flow plot for the differential equation:
scalefactor = 0.25;
{ylow, yhigh '} = {-5,10 };
flowplot = Table [Arrow [{1,f [ty 1}, Tal - {ty },
VectorColor - Blue, ScaleFactor - scalefactor, HeadSize -0.25 ],

DE.05.G3

endtime yhigh - ylow

{t 0, endtime, }. {y. ylow, yhigh, 5 i

Show[solutionplot, flowplot, PlotRange - {ylow, yhigh }1;

e ———

4 s .

: :::.::'\.\\\\\

Does this plot help you to confirm your answer in part i)?
If so, why?

O0G.3.b.iii)
Stay with the same differential equation:
Clear [diffeq, y, t, starter 1
(diffeq = {y [t] ==f[ty [t]1],y [0] == starter }) // ColumnForm
vt f:ft%ym

y[0] == starter
Ask Mathematicafor a formula for solutions:

| DsSolve [diffeq,y [t],t ]

({y[t] >2+E' (-2+starter ) +2t +t2}}
Use this formula to come up with the exact initial value (starter) on
y[0] that gives the break between the two families

O0G.3.b.iv)
Stay with the same differential equation:
Clear [diffeq, v, t, f, starter 1;

fILy_ 1= -t2+y

(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
YIt] == -tZy[t]
y[0] == starter
Run the following cells:
] Solve [fty 1==0,y]1

{y >t%)
auxillaryplot =Plot [t?, {t, 0, 1.2 endtime },
PlotStyle - Thickness [0.015 ], DisplayFunction - Identity ];

Show[solutionplot, flowplot, auxillaryplot,
PlotRange - {ylow, yhigh }];

2 \\\\\.\.. \.\.
R NN kki\\\

Describe what you see and explain why you see it.
oTip:

Don't take the bait too fast. The plotted funcitdis not a solution of

the differential equation:
| diffeq =y'[t1==f[ty [t]]
YIt] == -t2 eyt
| diffeq /. (yrt1-t2y
2t ==0
0G.3.c.i)

Here's another innocent-looking differential equation.

Clear [diffeq, y, t, f, starter 1;
flt,y 1 =y2-05t -1;

[t] > o t?)

(diffeq = {y' [t] == f [ty [t]1],y [0] == starter }) // ColumnForm
y [t]==-1-05t +y[t]?
y[0] == starter
This is a nasty one because clean formulas for solutions are simply no
available:
| thisa =0.5; Clear [a];
DSolve [{y’'[t] ==-1-at +y[t]1% y [0] ==starter },y [t],t ]

{{yrt1-- (al/3 (AiryAiPrime [ 1 *2?; ]+ ((7starter AiryAi [ S273 |-
al’3 AiyaiPtime [ 3| AiyBiPrime [ +535]) /
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(starter AiryBi [ azl,s ] + a3 AiryBiPrime [ azl/s ]))J /
Loorlsat VAT 1
(AII’yAI [ ;22 ]+ ((—starter AiryAi [ 273 |-
13 e i 1 — 1+at
a'/® AiryAiPrime [ 3| | AinyBi - | ;2,'3 J) /
[ 1

P 1 / . L
(staner AiryBi [ 2273 | +al’® AiryBiPrime 2273 ] J ) 1
This formula is not illuminating.

Giving up on formulas, you go to flow plots and numerical solutions

(NDSoIve )Z
{tlow, thigh }={0,35 };
{ylow, yhigh } ={-2,3 };
jump =0.4;
flowplot = Show[Table [Arrow [{1,f [ty 1},

Tail - {t,y }, VectorColor - Blue, ScaleFactor
{t, tlow, thigh, jump }, {y, ylow, yhigh, jump
AxesLabel - {"t","y"  }1;

- Normalize 1,
}1, Axes - True,

- 2|

Here are a couple of solutions:

Clear [starter 1;
Clear [yl,y2,y3,t ]
endtime = 3;
{starterl, starter2, starter3
ylt 1=yf[t] /.

NDSolve [diffeq /. starter
y2[t_1=y[t] /.

NDSolve [diffeq /. starter
y3[t_1=yIlt]/.

NDSolve [diffeq /. starter

}={-3,09 12 1}
- starterl, y [t1, {t, O, endtime 31011
- starter2, y [t1, {t, O, endtime }101T;

- starter3, y [t1, {t O, endtime }I[1I;

solutionplot =Plot [{yl[t],y2 [t],y3 [t]}, {t O, endtime 1},
PlotStyle - {{Thickness [0.008 ], Red }}, DisplayFunction - |dentity 1;
. . 1
Show[flowplot, solutionplot, AspectRatio - —2

PlotRange - {ylow, yhigh  +2}];

7 Z ¢
-2
What you see are samples of each of three types of solutions passing
through the plotted part of the ty-plane.
Experiment with your own plots to try to come up with an estimate of
initial values (starters) on§] that correspond to breaks between the
the families. Show off your answer with a convincing plot.

0G.3.c.ii)

Look at the differential equation again:
Clear [diffeq, vy, t, f, starter 1;
flt,y 1 =y2-05t -1;

(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
y'[t]==-1-05t +y[t]?
y [0] == starter

Explain the statements:

a) When you go with a starting value d@jybetween-1 and 1, then

the corresponding solution will intially go down as t advances from 0.
b) When you go with a starting value oidywith either y0] < —1 or

y[0] > 1, then the corresponding solution will intially go up as t
advances from O.

DE.05.G3-G4

G.4) Using bifurcation plots to study E. Coli growing in a
chemostat

This problem was adapted from an article by
Professor S.F. Ellermeyer of Kennesaw State College
in the Winter 1995 Newsletter of the
Consortium for Ordinary Differential Equations Experiments

O0G.4.a.i)

A chemostat is a well-stirred vessel that contains microorganisms into
which fresh medium is pumped at a constant rate F. The contents are
pumped out at the same rate so that the volume V of the fluid in the
chemostat remains constant.

Chemostat experiments performed by Hansen and Hubbell (Science,
20 (1980), pp 1491-1493)) in which the amino acid tryptophan was
pumped at a constant rate into a chemostat containing a certain strain
of E. coli bacteria indicated a growth model:

Clear [diffeq, y, t, f, s, d, starter 1;
0.81 (s-y) )
fIt, = | -d|y;
ey 1 ( 3+ (s-Y) y
(diffeq = {y' [t] == f[t,y [t]1],y [0] == starter }) // ColumnForm

yt] == (-d+ S8yl )yt

y[0] == starter
Here:
— y[t] measures the population of the E. coli at tiraéter the
pumping of the animo acid started.
- s is the concentration (in millionths of grams per liter) in of the
amino acid in the fluid pumped into the chemostat.
- d= 5 so larger values of d correspond to a fast running pump,
and low values of d correspond to a slow running pump.

In the experiment under study heres 9.8 ; so the model becomes:

s = 9.8;
081 (s-y) ]
fIL, S (2B v )y
foy- 1 3+ (s-Y) y
(diffeq = {y' [t] == f[t,y [t1],y [0] == starter }) // ColumnForm
Y] == (-0 SERRaR ) y it
y[0] == starter

Take a look at this contour plot dtfy] as a function of y and the
flushing parameter d:

{ylow, yhigh } = {1, 12 };
{dlow, dhigh '} = {0,1};

bifurcationplot = ContourPlot  [f [t,y 1, {d, dlow, dhigh 1,
{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50,
Contours - {0}, Axes - True, AxesLabel - {td oy,
Epilog - {{Red, Text ["A", {0.2,4 }]}, {Red, Text ["B", {0.75,7 }1}}1:

002040608 19
{d, y}s for which y’ = f['[, y] >0

{d, y}s for which y’ = f[t, y] <0
Explain why this plot signals that when you go witk 6.8, then no
matter what the starting populatiofoybetween 0 and 12 you go
with, then the E.coli population is guaranteed to decrease as t
increases.
lllustrate with at least one plot corresponding te: @8 and a starter
value on y0] between 2 and 10.

The light region indicates the
and the dark region indicates the

0G.4.a.ii)

Take a look at this:
Clear [d];
dd = 0.4;

ycrossover = FindRoot [(f [ty ]1/.d »dd) ==0, {y,6 }1[1, 21
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6.87317
Show [ bifurcationplot,

Graphics [{Red, PointSize  [0.05 ], Point [{dd, ycrossover  }]}1,
Graphics [{Red, Thickness [0.01 ], Line [{{dd, ylow 1}, {dd, yhigh }}1}1,
PlotLabel -> dd" = d" ];

y 0.4-d

12

10

8

6

4 A

2

0 d

0.20.40.60.8 1

Use this plot to help you describe the long term behavior of the E.
Coli population when you go with€dd = 0.4 with a starting value
on y{0] between 1 and ycrossover.

Also use this plot to help you describe the long term behavior of the E
Coli population when you go with ¢ dd = 0.4 with a starting value
on y{0] between ycrossover and 12.

lllustrate each of your responses with a couple of solution plots.

O0G.4.a.iii)
Take another look at the bifurcation plot:
] Show[bifurcationplot 1;
12y

10
8
6
4

2
d

0.20.40.60.8 1
How does the long term E. Coli population change as you raise the
flushing parameter d from 0 to 1?

0G.4.a.iv) Sensitive dependence on starter values?

Take another look at the bifurcation plot:
] Show(bifurcationplot 1;

<

12

10
8
6
4

2
602040608 19

Does this model show any signs of sensitive dependence on starter
data on y0]?

0G.4.v) Settingd to control the long term bacteria population

Take another look at this embellished bifurcation plot:

ygoal =6.0;
Show[bifurcationplot, Graphics [

{Red, Thickness [0.01 ], Line [{{dlow, ygoal }, {dhigh, ygoal }}1}11;

<

12
10

4
2

0 d
0.20.40.608 1

Estimate (by reading the plot) a value of the flushing parameter d that
you think will lead to an approximate long-term bacteria population of
ygoal=6.0 aslong as ¢ y[0] < 12.

DE.05.G4-G5

G.5) Reading a diffeq through bifurcation plots:
Parameter birfurcations and sensitive dependence on
starter conditions

O0G.5.a.i)
Here's an autonomous diffeq containing a parameter r.
Clear [diffeq, y, t, f, r, starter 1;

flt,y. 1 =y-n1

(diffeq = {y [t] ==f[t,y [t1],y [0] == starter
y'[t]==-r+y[t]
y[0] == starter

Here comes the bifurcation plot:

}) // ColumnForm

{ylow, yhigh '} ={-2,31};
{rlow, rhigh }={-1,2 };
bifurcationplot = ContourPlot  [f [t,y 1, {r, rlow, rhigh }.
{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50,

Contours - {0}, Axes - True, AxesLabel - {" "y" '}, Epilog -
{{Red, Text ["A", {-0.3,2 }1}, {Red, Text ["B", {1.2, -0.5 }1}}1;

-1

2105005 1 L5 2

The black region signals {r, y}s for which y’ = f[t, y] <0
The white region signals {r, y}s for which y’ = f[t, y] > 0.
Throw in phase lines for various r's:
Clear [phaseline, r,y 1;
phaseline [r_] :=PhaseLine [f[t,y 1, {y,ylow, yhigh }, Blue, r 1]
jump =0.5;
phaselines = Table [phaseline [r], {r, rlow +jump, rhigh -jump, jump }1];
newphaseplot = Show[bifurcationplot, phaselines,

PlotRange - {{rlow, rhigh }, {ylow, yhigh }}1;
y

-0.50 0.5 1 1.5 2
If you go with an r and a starting value di®lyso that(r, y[O]} plots

out inside the region labeled A, then what do you expect to happen to
the corresponding solution of

yIt] = f[t, y[tl]?

If you go with an r and a starting value d®lyso that(r, y[0]} plots
out inside the region labeled B, then what do you expect to happen to
the corresponding solution of

yIt] = f[t, yltl]?

What choices ofr, y[0]} within the plotted region flirt with the
dreaded issue of sensitive dependence on starter conditiofi@]@n y

O0G.5.b.i)
Here's another single diffeq containing a parameter r:
Clear [diffeq, y, t, f, s, d, r, starter 1

frty_ 1= yE¥-r;
setup =
(diffeq = {y' [t] == f[ty [t]],y [0] == starter
YIt] == -1 +ESy )
y[0] == starter
And a bifuraction plot:

}) // ColumnForm
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{ylow, yhigh } = {-10, 20 };
{rlow, rhigh } ={04,25 1},

bifurcationplot = ContourPlot  [f [t,y ], {r, rlow, rhigh },
{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50,
Contours - {0}, Axes - True, AxesLabel -y 1,
Epilog - {{Red, Text ["A", {0.8,8 }1}, {Red, Text ["B", {2,13 }1}}1;

0.5 1 1.5 2 2.5
The black region signals {r, y}s for which
The white region signals {r, y}s for which
Owing to the transcendental nature [df §]:
lfity
r +EVY/Sy
The phase line instruction will not run for this setup. But nevertheless,
you can use the plot you see above to answer the following questions
If you go with an r and a starting value di®lyso that(r, y[0]} plots
out inside the region labeled A, then what do you expect to happen to
the corresponding solution of
ylt] = f[t, y[t]]?

Go with r = 1.0 and a starting value ofi0y so that{1, y[O]} plots out
inside the region labeled A and estimate (by reading the plot) the
limiting value of \ft] ast goes te of the corrresponding solution of

it = f[t, yltl].
0G.5.b.ii)
Stay with the same set up as in part i) immediately above and take

another look at the bifurcation plot:
] Show(bifurcationplot 1;

The black region signals {r, y}s for which y' f[t, y] <0.
The white region signals {r, y}s for which y’ f[t, y] > 0.
If you go with an r and a starting value ¢0yso that(r, y[0]} plots
out inside the part of the region labeled B that sits directly ABOVE
the region labeled A, then what do you expect to happen to the the
corresponding solution of
yitl = f[t, yltl?

Go with r = 1.0 and a starting value of0} so thaf{1, y[0]} plots out
inside the part of the region labeled B that sits directly above the
region labeled A and estimate (by reading the plot) the limiting value
of y[t] as t goes to infinity of the corrresponding solution of

yItl = f[t, y[t]].

Go with r= 1.0 and a starting value ofQ} so that{1, y{0]} plots out
inside the part of the region labeled B that sits directly BELOW the
region labeled A and estimate (by reading the plot) the limiting value
of y[t] as t goes to infinity of the corrresponding solution of
yit] = f[t, yltl].
0G.5.b.iii)

Stay with the same set up as in part i) immediately above and take
another look at the bifurcation plot:
] Show(bifurcationplot 1;

DE.05.G5

{r, y}s for which y’ = f[t, y] <0.

{r, y}s for which y’ = f[t, y] > 0.

Diffeq folks like to say that a parameter point rbifurc is a

bifurcation value if the family of solutions corresponding to an r
slightly larger than rbifurc look qualitatively different from the family
of solutions corresponding to an r slightly less than rbifurc. Use the
plot above to estimate the bifurcation point rbifurc for this diffeq.

O0G.5.b.iv)

Stay with the same set up as in part i) immediately above and take
another look at the bifurcation plot:
] Show(bifurcationplot 1;

The black region signals
The white region signals

Y
20

15

-105 5

.5 1 1.5 .
For what choices df, y[0]} do you expect to run into the problem of
sensitive dependence on starter condtions?

Is there any worry about sensitive dependence on starter conditions
when r is safely larger than the bifuraction point rbifurc?

OG.5.¢) Hysteresis
Here's another single diffeq containing a parameter r:

Clear [diffeq, y, t, f, r, d, starter 1;
flLy_ 1= r+y-y%

setup =
(diffeq = {y [t] == f[ty [t]],y [0] == starter }) // ColumnForm

Yt ==r+y(t]-y(t)?

y[0] == starter

And a bifurcation plot:

{ylow, yhigh '} = {-3,3 };
{rlow, rhigh } = {-05,05 1};

bifurcationplot = ContourPlot  [f [t,y 1, {r, rlow, rhigh },
{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50,
Contours - {0}, Axes - True, AxesLabel -y },
Epilog - {{Red, Text ["A", {0, -2}]}, {Red, Text ["B", {0,2 }]}}1;

y

3

2

1

0

-1

-2 A

ozozroozoa '
The black region signals {r, y}s for which y’ = f[t, y] <0
The white region signals {r, y}s for which y, = f[t, y] >0.

Clear [phaseline, r,y 1
phaseline [r_]:=
PhaseLine [f [ty 1, {Yy,ylow, yhigh
rhigh  -rlow
10
rhigh - rlow

}, LightCadmiumYellow, r 1

jump =

phaselines = Table [phaseline [r], {r,rlow +h, rhigh -h, jump }1;

newphaseplot = Show[bifurcationplot, phaselines,
PlotRange - {{rlow, rhigh }, {ylow, yhigh }}1;

0.2
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b.go

3

2

1

0 - r
.1=.32
-2 A

-0.4-0.2 0 0.2 0.4
Diffeq folks like to say that a parameter poiat rbifurc is a
bifurcation value if the family of solutions corresponding to an r
slightly larger than & rbifurc look qualitatively different from the
family of solutions corresponding to an r slightly less than rbifurc.
Use the plot above to estimate the bifurcation points rbifurc for this
diffeq.

For what choices df, y[0]} do you expect to flirt with the problem of
sensitive dependence on starter condtions?

0G.5.d)
Here's another single diffeq containing a parameter r:
Clear [diffeq, y, t, f, r, d, starter 1;
fly.r 1 =ry-y%
setup =
(diffeq = {y' [t] == f[y[t],r 1,y [0] == starter }) // ColumnForm

Y[ty ==ry [t]-y[t®
y[0] == starter

And a bifurcation plot:

{ylow, yhigh '} = {-3,3 };
{rlow, rhigh }={-051 };

bifurcationplot = ContourPlot  [f [y, r ], {r, rlow, rhigh },
{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50,
Contours - {0}, Axes - True, AxesLabel - {"r,"y" 1},
Epilog - {{Red, Text ["A", {0.8,8 }1}, {Red, Text ["B", {2,13 }]1}}1;

W N PO RPN W

0w 200D D@81

The black region signals {r, y}s for which y' = f[t, y] <0.

The white region signals {r, y}'s for which y’ = f[t, vyl > 0.
Use the plot above to estimate the bifurcation point rbifurc for this
diffeq.

For what choices df, y[0]} do you expect to flirt with the problem of
sensitive dependence on starter condtions?

0G.5.e)
Here's yet another single diffeq containing a parameter r:
Clear [diffeq, v, t, f, r, d, starter 1;

fIL,y_ 1 =1+ry -y%

setup =
(diffeq = {y' [t] == f [ty [t]],y [0] == starter }) // ColumnForm

yItl==lsryt]-y(t]®

y [0] == starter

And a phase plot:

{ylow, yhigh
{rlow, rhigh

bifurcationplot = ContourPlot  [f [t,y ], {r, rlow, rhigh },
{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50,
Contours - {0}, Axes - True, AxesLabel -ty },
Epilog - {{Red, Text ["A", {0, -3}1}, {Red, Text ["B", {1.5,4 1}1},
{Red, Text ["C", {7, -1.51}1}}1;

DE.05.G5-G6

0
-2 -
A

420 2 46 810
The black region signals {r, y}s for which y’ = f[t, y] <0.
The white region signals {r, y}'s for which y/ = f[t, y] > 0.
Use the plot above to estimate the bifurcation point rbifurc for this
diffeq.

For what choices df, y[0]} do you expect to flirt with the problem of
sensitive dependence on starter condtions?

O0G.5.f)

Here's another diffeq, but this one contains no parameter:
Clear [diffeq, y, t, f, r, d, starter 1;
flty 1= (-D2-1

setup =
(diffeq = {y[t] ==f[ty [t]1],y [0] == starter }) // ColumnForm
Yt ==-1+ (-1ey[t])?

y[0] == starter
Because there is no parameter, you can't go for the contour plots as
above; so you do something similar:

phaseplot =
Plot [f [ty 1. {y, -2, 4}, PlotStyle - {{Blue, Thickness [0.01 1}},
1
AxesLabel Yty , AspectRatio —_— T
AR ) P _) GoldenRatio ]
Y
8
6
4
2
21 1 3 7Y

Indicate how this plot signals that when you go with ¥J0] < 2, then
the corresponding solution of

Y[t = f[t, yit]]
tends to 0 as-b co.
For what choices of[9] are you flirting with sensitive dependence on
starter conditions?

G.6) Analysis of f[t, y]

0G.6.a.i)

You are given this diffeq to analyze:
Clear [diffeq, y, t, f, starter 1;
frt,y 1 =y-22E03t;

(diffeq = {y [t] == f[ty [t]],y [0] == starter }) // ColumnForm

y[t] ==-22E 930 Ly[t]

y[0] == starter
The first thing you do is look at:

| fity 1

-22E 93t 4y
And you say to yourself: "One single phase line is not enough. If |
want to use phase lines, I'll want several."

Clear [phaseline, t, y 1
phaseline [t_]:=PhaseLine [f[ty ], {y,ylow -1 yhigh +1} Red, t ]

{ylow, yhigh '} = {-0.5,4.0 };
{tlow, thigh } ={0,61};
jump =0.5;

phaselines = Table [phaseline [t], {t tlow +jump, thigh -jump, jump 1}1;
flowplot = Table [Arrow [{1,f [ty 1}, Tal - {ty },
VectorColor - Blue, ScaleFactor - 0.4, HeadSize -0.2 ],
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{t, tlow, thigh, jump }. {y. ylow, yhigh, jump I3

Show[flowplot, phaselines, Axes

1
AspectRatio > ———————1];
GoldenRatio

- True, AxesLabel - Yy 1

[(ARNNNNSW

Look again at the formula foftf y]:

I fity 1
-22E 03t Ly

What is it about the formula foftf y] that made you want to use more

than one phase line?

0G.6.a.ii)
You are given a new diffeq to analyze:
Clear [diffeq, vy, t, f, starter 1;

flty_ 1=09 (y-1)(y -3);

(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
Yy [t]==09 (-3+y[t]) (-1+y[t])
y[0] == starter
Then you look at:
I fity 1

09 (-3+y) (-1+y)
And you say to yourself: "One single phase line is enough:"

{ylow, yhigh '} = {0, 3.5 };
phaseline = PhaseLine [f [t,y ], {y.ylow, yhigh +1}, Magenta, -0.51;
{tlow, thigh }={0,61};
jump =0.5;
flowplot = Table [Arrow [{1,f [ty 1}, Tall - {ty },
VectorColor - Blue, ScaleFactor - 0.6, HeadSize -031],
{t, tlow, thigh, jump }, {y, ylow, yhigh, jump 1

Show[flowplot, phaseline, Axes

1
AspectRatio > ————————1];
GoldenRatio

- True, AxesLabel - "ty }.

S S
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Look again at the formula foftf y]:
| frty 1
09 (-3+y) (-1+y)
What is it about the formula foftf y] that made you know you could
get by with just one phase line?

0G.6.a.iii)

You are given a new diffeq to analyze:
Clear [diffeq, y, t, f, r, starter 1

flLy. 1 =39 (ﬁl) v-2)
(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
Y[t]==39 (-2+y[t]) (-1+ gth)
y[0] == starter
Then you look at:
| fity 1
39 (-2+y) (-1+ 0_53/7”2)
And you say to yourself: "A birfurcation plot is just the ticket."
{ylow, yhigh } = {-1,8 };
{rlow, rhigh } = {-1,3 };

bifurcationplot = ContourPlot  [f [t,y ], {r, rlow, rhigh },
{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50,
Contours - {0}, Axes - True, AxesLabel -y 1,
Epilog - {{Red, Text ["A", {2.5,4 }1}, {Red, Text ["B", {0,15 }1}}1I;

DE.05.G6

;T 0 1 2z 3
The black region signals {r, y}s for which y’ = f[t, y] <0.
The white region signals {r, y}'s for which y/ = f[t, y] > 0.

And you throw in some phase lines corresponding to different r's:

Clear [phaseline, r, y 1;
phaseline [r_1] :=PhaseLine [f[t,y 1, {y,ylow, yhigh }, Orange, r ]
rhigh - rlow
he o ———
10
. rhigh - rlow
jump = ————;
phaselines = Table [phaseline [r], {r,rlow +h,rhigh -h, jump }1;
newphaseplot = Show[bifurcationplot, phaselines,
PlotRange - {{rlow, rhigh }, {ylow, yhigh }}1;

-0.500.511.522.53
Look again at the formula foftf y]:
| frty 1

y
39 (-2+y) (-1+ W)

What is it about the formula foftf y] that made you want to go with
a bifurcation plot and a sampling of phase lines for various r's?

0G.6.a.iv)

You are given yet another new diffeq to analyze:

Clear [diffeq, y, t, f, r, starter 1;
y
frt, =39 (——— -1) (ty -2);
oy ] (oY) @ -2
(diffeq = {y [t] == f[ty [t]],y [0] == starter }) // ColumnForm
yt]==39 (-1+ ) (-2+ty [t])
y[0] == starter
Then you look at:
| fity 1
y
39 (-1+ 057”2) (-2 +ty )

And you say: "None of the graphics | used above gives me a clean
analysis of the behavior of the solutions of this diffeq." You are right.
Why are you right?

0G.6.b)

As entered above, each diffeq was specified by a fundtipn]f

(which may or may not contain an extra parameter or two).

The key to understanding what the diffeq is all about is a cursory look
at the given formula for(f, y].

Write a paragraph or two about what you look for before you go on.

O0G.6.c.i)

Now you have the opportunity to practice what you preach.
Here is a new diffeq:
Clear [diffeq, y, t, f, starter 1;
flLy. 1=02(y -2)(y -4)
(diffeq = {y' [t] == f[t,y [t]],y [0O] == starter }) // ColumnForm
Y[t]==02 (-4+y[t]) (-2+y[t])
y[0] == starter
To analyze this diffeq, would you choose
- single phase line,
— multiple phase lines
- bifurcation plots
- none of the above?
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0G.6.C.ii)
Here is a new diffeq:
Clear [diffeq, y, t, f, r, starter 1;
y
L, =02 (y-1) (——-4);
Loy ] 01 (e -4)
(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
YIt1==02 (-1+y[t]) (-4+ g5)
y[0] == starter

To analyze this diffeq, would you choose
- single phase line,

- multiple phase lines

- bifurcation plots

- none of the above?

0G.6.c.iii)

Here is a new diffeq:
Clear [diffeq, vy, t, f, starter 1

1
flLy. 1= (;ySm [t]—l] (v - Cos[t1);

(diffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
y'[t] == (-Cos[t] +y[t]) (fl+%5iﬂ [t1ylt]
y[0] == starter

To analyze this diffeq, would you choose
- single phase line,

- multiple phase lines

- bifurcation plots

- none of the above?

0G.6.c.iv)
Here is a new diffeq:

Clear [diffeq, vy, t, f, starter, r 1;
tinys 1= (L) o
LY 3 ;

(diffeq = {y [t] == f[ty [t]],y [0] == starter }) // ColumnForm
YIt] == (-r+y[t]) (-1+3ry [t])
y [0] == starter

To analyze this diffeq, would you choose
- single phase line,

- multiple phase lines

- bifurcation plots

- none of the above?

oG.c.v)

Here is a new diffeq:
Clear [diffeq, vy, t, f, starter, r 1
flLy 1= (yr/2-1)( -t)

(diffeq = {y' [t] == f[ty [t]],y [0] == starter }) // ColumnForm
Ylt] == (-t +y[t]) (-1+ 3 ry[t])
y[0] == starter

To analyze this diffeq, would you choose
- single phase line,

- multiple phase lines

- bifurcation plots

- none of the above?

G.7) Controlling the temperature

This is a problem from an area of mathematical engineering called

control theory. If your university has an electrical engineering

department, you're likely to find control theory folks. Some math
departments also have control theory folks as well.

Here's a house whose internal temperature atttimmeasured by the

function y{t]:
house = Graphics [

{Thickness [0.01 ], Line [{{0,01}, {0,113}, {1,113}, {1,013}, {0,0}}1}1;
heatarrow = Arrow [{0.75, 0 1}, Tail - {0.625, 0.375 1}, VectorColor - Red];

heatlegends = Graphics [{Text ["k", {0.875,0.4375 }1,
Text ["y [t] = internal temp", {0.5,9.75 1}1,
Text ["OutTemp”, {1.5,0.125 1}]1}1;

Show[house, heatarrow, heatlegends,
PlotRange - {{-1,19 }, {-0.25,1.25 1}}I;
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Newton's law of cooling says that the rate at which heat leaves the
house to the outside is directly proportional to the difference between
the outside temperature and the temperature inside the room. In math
talk, this says

y'[t] = k (OutTemp- y[t])
for a positive proportionality constant k which is determined by the
insulation of the house.
Glancing at the differential equation, you can tell if the outside
temperature is higher than the temperature inside, thignsy
positive, and so the room is heating up.

But nobody wants to swelter in heat and soak in sweat; that's why air
conditioning is so popular. To air condition this simple house, attach
to the house an extra air conditioning room full of ice, 32 degFees
cold:
ACroom = Graphics [{Thickness [0.01 ],
Line [{{0,01}, {0,05 }, {-1,05 3}, {-1,01}, {0,03}1}1;
ACarrows = Arrow [{-0.5,0 }, Tail - {0.25, 0.25 1}, VectorColor - Blue ];

AClegends = Graphics [
{Text ["c", {0.125,0.3125 }], Text ["acTemp = 32", {-0.5,0.125 }]}I;

Show[house, heatarrow, heatlegends, ACroom, ACarrows, AClegends,
PlotRange - {{-1,1.9 }, {-0.25,1.25 1}}I;

—>
——

acTenp = 32 Qut Tenp

The same Newton's law of cooling says that the combined effects of
the heating from the outside and the cooling from the ice room results
in this crisp differential equation:

y'[t] = c(acTemp—- y[t]) + k(OutTemp- y[t])

Clear [OutTemp,t,y,c, k 1;
acTemp = 32;

Clear [f, x,y,a, b,t 1;
flt,y_ 1=k (OutTemp-y) +c (acTemp-y);

model = diffeq
{y'[t1==fty [t1l,y [0] ==starter }
y'[t]==c(32-y[t])+k (OutTemp -y[t])
y[0] == starter
Here and throughout the rest of this problem,
y[t] is measured in Fahrenheit degrees and tis measured in hours.
In this model, the value of k is determined by the insulation in the
walls and roof of the house. You control the value of ¢ by varying the
speed of the blower that pushes cold air from the ice room into the
house. The bigger you make c, the more cooling the house gets.

O0G.7.a.i) Controlling the air conditioner when it's hot outside

Go with the sample case in which=l0.4 and the outdoor
temperature is 5
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k = 04; heatplot =
OutTemp = 95; ListPlot ~ [Columbustemps, PlotStyle -> {PointSize [0.02 ], Red },
acTemp = 32; AxesLabel -> {"t", "Outdoor temperature" 11

Clear [f, x,y,a, b, t 1;

fIt,y_ 1=k (OutTemp-y) +c (acTemp-y); Qutdoor tenperature

model = diffeq % o S
('Itl==fIty [t11,y [0] == starter } & . ;
y'[t]==c (32-y[t])+04 (95-yI[t]) 80 L. .
y [0] == starter 750 ,° b
Look at the phase plot: F— 15— !
{ylow, yhigh } = {40, 110 };
{clow, chigh } = {0, 1 }; To get a good approximation of OutTejtjpfit the temperature data

with well-chosen functions:

ContourPlot  [f [t,y 1, {c, clow, chigh 1},
Clear [OutTemp,t 1;

{y, ylow, yhigh }, ContourSmoothing - Automatic, PlotPoints - 50,

Contours - {0}, Axes - True, AxesLabel - {"c","y" 1}, OutTemp[t_ ] = Fit [Columbustemps, {1, Sin [—2 7t ]. Cos [—2 7t 13t]
Epilog - {{Red, Text ["y" [t] = f[ty [t]] < 0", {0.6,90 }1}, 24 24
(Blue, Text ['y' [t] = f(ty [t1] > 0" (03,55 }1}}1; 80.3314 -11.2839 Cos [ 2L ] +3.256018in [ZL1]
12 12
y .
110 Check the fit:

100 fitplot = Plot [OutTemp[t], {t, 0,24 1},
90 PlotStyle - {{Blue, Thickness [0.01 ]}}, DisplayFunction - Identity 1;

80

70 Show [ heatplot, fitplot, DisplayFunction - $DisplayFunction 1;
60
50 o o Qut door tenperature

40

0 02040608 1°¢ 90
Read this phase plot and then come up with the ¢ that will control the 85
long term temperature of the room at approximately 72 de@fees 80
75
Explain how the plot indicates that your control should work for any s
starting temperature[@] between 40 and 110.
Pretty decent fit.
Show off your work with a couple of great solution plots. Throw in a The resulting differential equation model is:
flow plot too.
Clear [f, t,y,c, k 1;
acTemp = 32;
k = 0.4;
idealtemp = 72;
flt,y 1 =k (OutTemp[t] -y) + c[t] (acTemp - y);
0G.7.a.ii) Variable outdoor temperature. model =
Up to this point, you went with the assumption that the outdoor , :difﬁq : {3yz iy . f E'AV 2101;3'11 [011;2:8;:‘2” Wt C3°'2L;r225‘zm .
temperature remains a constant 95 degrees. This is bogus because t z[[o]]:’:’;;mjr( CYIL) 04 (80,3314 - 112639 Cos [z ]+ 3 notele

temperature varies as tihadvances. Here's how you set up a model

in which the outdoor temperature OutTdthparies as advances. In the last part you came up with a formula fij & terms of

OutTemt] that you hoped would make the internal temperature settle

Clear [f.ty, c, OutTemp, K 1: in on the ideal temperature of°72

acTemp = 32; Type in your €t] formula here and run:

k = 0.4; t 1< TypeH

idealtemp = 70; ITycpéﬁe]re yperiere

flt,y_ ] =k (OutTemp[t] - y) + c[t] (acTemp - y); Test out your control functiorg in the cases that the initial

temperature of the house is’895 and 105:

model =
i N - = Clear [y1,y2,y3,t 1;
, (difeq = &y [t] == fILy [t1],y [0] == starter }) // ColumnForm {starterl, starter2, starter3 } = {85, 95, 105 };
y'[t]==c[t] (32-y[t])+0.4 (OutTemp[t]-y[t]) endtime = 36;
yEO] == start.er ) ) o ) ygoal =72;
Notice that in this model, the air conditioning strendthis also
o yiIt 1=yt /.
allowed to vary with time t. NDSolve [diffeq /. starter - starterl, y [t], {t O, endtime }][M1I;
. . . Y21t 1=y[t] /.
Come up with a function[f expressed in terms of OutTeftipso that NDSolve [diffeq /. starter - starter2,y  [t], {t, 0, endtime }][LI;
i . y3[t1=y[t]/
solutions Yt] of: NDSolve [diffeq /. starter - starter3, y [t1, {t O, endtime }1011;
] diffeq
{y'[t]==cft] (32-y[t])+04 (OutTemp(t]-y[t]),y [0] ==starter } Plot [{yl[t],y2 [t],y3 [t]}, {t O, endtime 3},
can be expected to settle in on the ideal temperature of 72 PlotStyle - ({Thickness [0.015 ], Red }}, AspectRatio - r
The beauty of this is that you can have the outdoor temperature . . . GoldenRatio
control the air conditioner instantaneously. PlotRange - {ylow, yhigh 1}, AxesLabel - {"t","y [t]"}, Epilog -
. . {Green, Thickness [0.01 ], Line [{{O, ygoal }, {endtime, ygoal 311 }];
0G.7.a.iii) Putting your c[t] control function to work. Test out your control functior{t on other cases.
Here are some actual outdoor temperatures in the form Report what you find. Show a flow plot and analyze it to see whether
{hour, temperatutecollected over a steamy 24 hours in Columbus, your controlling function fails for extreme starter temperatures.
Ohio. )
0G.7.a.iv)
Columbustemps = ) )
({0, 70}, {1, 72}, {2, 74}, (3,76}, {4 78}, In the last part, you went with Columbus, Ohio temperature data:
5, 793, {6 823, (7 851} (8 90} {9, 90}, Columbustemps = ({0,70 }, {1, 72 }, (2,74 }, {3,76 }, {4, 78 }, {5,79 3,
{10, 90 3}, {11, 93}, {12, 93}, {13, 92 }, {14, 88 },
{6,823}, {7,851}, {8,903}, {9,903}, {10,90 }, {11,93 }, {12,931},
{15,873, {16, 82}, {17, 80}, (18, 76}, (19, 76}, 13,92 ), (14,88 }, (15.87 }, (16,82 }, (17,80 }, (18,76
20, 71}, {21, 69 }, {22, 68 }, {23, 68 }, {24, 68 }}; {13,923, (14,88 3, (15,87 }, {16,823, (17,80}, (18,76 },
(20, ! ! ! ! ' ' ! ! ! {19, 76 }, {20,71 }, {21,69 }, {22,68 }, {23,68 }, {24,68 }};
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heatplot = ListPlot  [Columbustemps, PlotStyle - {PointSize [0.02 ], Red },
AxesLabel - {"t", "Out door temperature" }1;

Qut door tenperature

90 cee

> t
7 5 10 15  20°...

And you fit the temperature data with well-chosen functions:

Clear [OutTemp,t 1;
. ) 2nt 2t
OutTemp[t_ ] = Fit [Columbustemps, {1, Sin [ 7 ], Cos [ 7 1}ht]
st . st
803314 -11.2839 Cos [-5-] +3.25691Sin [ -]
Check the fit:
fitplot = Plot [OutTemp([t], {t, 0,24 1},
PlotStyle - {{Blue, Thickness [0.01 ]}}, DisplayFunction - |dentity 1;
Show [ heatplot, fitplot, DisplayFunction - $DisplayFunction 1;

Qut door tenperature

90
85
80
75

V50 T5 20

Nice fit.
Why is it usually a good idea to use, as above, combinations of

1, Sif3zt], Cog 2%t ]
to go after a decent fit of 24 hour temperature data?
aTip:
When you change tt24 to, sayl2, you get garbage:

Clear [OutTemp,t 1;
2

OutTemp[t_ ] = Fit [Columbustemps, {1, Sin [ ], Cos [zlet]}t ]

wt
12

79.8894 - 023533 Cos [7-] 0591506 Sin [ ]
Check the fit:
fitplot = Plot [OutTemp[t], {t 0,24 1},
PlotStyle - {{Blue, Thickness [0.01 ]}}, DisplayFunction - |dentity  1;
Show [ heatplot, fitplot, PlotRange - All,

DisplayFunction - $DisplayFunction 1;

Qut door tenperature

5 10 1 20... ¢

In addition to the fact that there ¢24 hours in a day, there is
something abotSin[ 24] andCoq 2£ | that makes these natural
fitters of 24 hour temperature data. What is it?

G.8) The falling body and the leaking bucket:
Setting parameters to fit the situation.
Getting there in infinite time versus getting there in
finite time
0G.8.a.i) The leaking bucket

This part was adapted from the Hubbard-West text
"Differential Equations: A Dynamical Systems Approach."
Springer-Verlag, 1991
DiffEq& Mathematica students will find lots of good stuff in this modern
text.

Here is a sample of the differential equation of radioactive decay:

Clear [diffeq, y, t, f, r, starter 1
fre,y_ 1 =-ry;

(radiodiffeq = {y' [t] == f [ty [t]],y [0] == 100}) // ColumnForm

DE.05.G/~G8

Here [is a positive number.
The negative sign indicates that y[t] decreases as tincreases.

Here \[t] measures the percentage of original radioactivity that is left
aftert time units. Formulas for the solutions, which you already know,
are easily available:

] DSolve [radiodiffeq, y [t1,t1]

{{y[t] >100E"" }}
Although y[t] - 0 as t- o, there is no way to gefty = O for a finite
t.

But when you have a leaking bucket full of water, then all the water
leaks out in finite time.

To study this from the diffeq point of view, go with differential
equation of leaking cylindrical bucket 10 inches high:

A derivation of this differential equation is given in the Hubbard-West
text.

Clear [diffeq, y, t, f, r, starter 1;
fr oy 1=-r vy
starter = 10;
(bucketdiffeq = {y' [t] == f[t,y [t]],y [0] == starter }) // ColumnForm
YIt] == -r Ay Tty
y[0] == 10
Here [ is a positive number you will determine later.

y[t] measures the depth of the water in the bucket at time t
The negative sign indicates that y[t] decreases as tincreases.
The starting condition y[O] = 10indicates

that the bucket is full at time t=0

You can go after a formula fofty by separating and integrating:
Clear [r,t,y 1;

newleft = u;
Vylt]
newright = -r;
samediffeq = newleft == newright;
t t
integratedeqn =I newleft dt ==j newright dt;
o o

neweqn = integratedeqn /.y [0] - starter;

Clear [formulay 1;
ysol = Solve [neweqn,y [t1];
formulay [t 1 =y[t] /.ysol [1]
% (40 -410rt +r2t?)
Disregard the error messages.

Given that the bucket leaks dry in 20.3 seconds, look at this plot of

formulay[20.3 as a function of r:
1

Plot [formula 2031, {r,0.1,05 , AspectRatio B e
[ A 1t } P GoldenRatio

AxesLabel - {"r", "formulay [20.3 1"}];
fornul ay [20. 3]
4
3
2

1

0.2 0.3 0.4 0.5"

And use what you see to set r so that form@@yg| = 0.

0G.8.a.ii)

Having set r so that formul&0.3] = 0, plot formulayt] as a function
of t for t running from 0 to 20.3.

Then plot formulajt] as a function of t for running from 0 to 40.

Do you trust the second plot as accurate?
Why or why not? Does this the second plot enter the danger zone?
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0G.8.b.i) Terminal velocity of a falling body

A body falling in a vacuum is subject only to the force of acceleration.
This means that the velocitytyof a body falling in a vacuum solves
the simple diffeq
V[t] = 9.8 (meters per second per second).

When air resistance is incorporated, many folks like to assume that th
air resistance is proportional to the velocity itself. This leads to the
model:

Clear [f,v,r,t 1;

flt,v. 1 =98 -rv

model = (diffeq = {V' [t] == f[t,v [t]],v [0] == 0}) // ColumnForm

V/[t]==98 -rv [t]
v[0] ==0

You are investigating the terminal velocity; so you type and run:
] Solve [f[tv 1==0,v]

{tv- 22}
If you are given that the terminal velocity is 25 meters per second, thel
what r do you go with?

O0G.8.b.ii) The falling cat

This part was adapted from an early draft of the book by Paul Blanchard,
Robert Devany and G. R. Hall, "Differential Equations," PWS Publishers.
If you like differential equations, then you will like this book.

According to the New York Times (August 22, 1989), cats sometimes
fall from high apartment building windows and survive. The same
article reports that experts say that the terminal velocity of a falling
cat is about 27 meters per second (60 miles per hour). Set r so that in
the model above, the terminal velocity is

27 meters per second
and plot Vyt] as a function of.
About how long does this model predict it will take fdt] o begin to
close in on the terminal velocity?
How far does this model predict that the cat must fall before its
velocity is approximately equal to its terminal velocity?

Do you think the falling cat reaches its terminal velocity in
in finite time
or
in infinite time?
aTip:
If you can get your hands on a formulav[t], then you can measure
how far the cat falls during the firstseconds by calculating

fosv[t] at.

If you usenpsolve to get your plot ov[t], then you can measure how
far the cat falls during the firstseconds by calculating
Nintegratév(t], {t, O, §].

0G.8.b.jii)

Some folks prefer the model that makes make air resistance
proportional to the square of the velocity:

Most folks prefer the first model for hard objects such as baseballs.
They often prefer the second model for fluffy things such as rag mops.

Clear [f, v, 1t 1
frt,v_ ] =098 -rv2;

model = (diffeq = {V' [t] == f[t,v [t]],Vv [0] == 0}) // ColumnForm

V/[t]==98 -rv [t]?
v[0] ==0
Investigate, as above, the terminal velocity as a function of r, and ther
set r so that the terminal velocity is 27 meters per second.
Plot {t] as a function of t.
About how long does this model predict it takes fidf to begin to
close in on the terminal velocity?
How far does this model predict that the cat must fall before its
velocity is approximately equal its terminal velocity?

DE.05.G8&G9

0G.8.b.iv)

Compare the results you got from both models. Is the information you
got from each strikingly different? Is there a danger zone in either
model?

G.9) Hand symbolic manipulation: Separating and
integrating

0G.9.a.)

Here's a little diffeq:

Clear [diffeq, y, t, f, r, b, starter 1;
fILy_ 1 =1+ (y/2);

(diffeq = {y' [t] == f[ty [t]],y [0] == 0.51}) // ColumnForm
Yt ==1+%p
y[0] == 0.5

Use separation of variables to try to come up with a formula for the
solution.

Analyze the formula and determine whether the solution escapes to
infinity in finite time or infinite time.

0G.9.a.ii)
Here's a little diffeq related to the diffeq in part i) above:
Clear [diffeq, y, t, f, r, b, starter 1;
y 2
Tty 1 =1+ ()
(diffeq = {y' [t] == f [ty [t]],y [0] == 0.5}) // ColumnForm
yt] == 14 ¥t
y[0] ==0.5

Use separation of variables to try to come up with a formula for the
solution.

Analyze the formula and determine whether the solution escapes to
infinity in finite time or infinite time.

0G.9.a.iii)
Here's a little diffeq related to the diffeq in part i) above:
Clear [diffeq, y, t, f, r, b, starter 1;
fIy_ 1= V1-y2;
(diffeq = {y' [t] == f[t,y [t]],y [0] == 0}) // ColumnForm
y[t]==Vi-y[t]?
y[0] ==0

Use separation of variables to try to come up with a formula for the
solution.
Analyze the formula and determine the for which the formula is
correct.

oTip:

The danger zone!

0G.9.a.iv)
Here's a new differential equation:
Clear [diffeq, y, t, f, r, starter 1;

fly 1 =t-y%

(diffeql = {y [t] == f[ty [t]],y [0] == 4.8 }) // ColumnForm
yo[t]==t-y[t?
y[0] == 48

Separation of variables is useless for this one.
Got any idea why?
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